Expander properties and the cover time of random intersection graphs

We investigate important combinatorial and algorithmic properties of G n , m , p random intersection graphs. In particular, we prove that with high probability (a) random intersection graphs are expanders, (b) random walks on such graphs are “rapidly mixing” (in particular they mix in logarithmic ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2009-11, Vol.410 (50), p.5261-5272
Hauptverfasser: Nikoletseas, S., Raptopoulos, C., Spirakis, P.G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate important combinatorial and algorithmic properties of G n , m , p random intersection graphs. In particular, we prove that with high probability (a) random intersection graphs are expanders, (b) random walks on such graphs are “rapidly mixing” (in particular they mix in logarithmic time) and (c) the cover time of random walks on such graphs is optimal (i.e. it is Θ ( n log n ) ). All results are proved for p very close to the connectivity threshold and for the interesting, non-trivial range where random intersection graphs differ from classical G n , p random graphs.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2009.08.028