When is the SIP (SSP) property inherited by free modules

A right R-module M has right SIP (SSP) if the intersection (sum) of two direct summands of M is also a direct summand. It is shown that the right SIP (SSP) is not a Morita invariant property and that a nonsingular C(11)(+)-module does not necessarily have SIP. In contrast, it is shown that the direc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Hungarica 2006-07, Vol.112 (1-2), p.103-106
Hauptverfasser: Birkenmeier, G. F., Karabacak F., Tercan A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A right R-module M has right SIP (SSP) if the intersection (sum) of two direct summands of M is also a direct summand. It is shown that the right SIP (SSP) is not a Morita invariant property and that a nonsingular C(11)(+)-module does not necessarily have SIP. In contrast, it is shown that the direct sum of two copies of a right Ore domain has SIP as a right module over itself.
ISSN:0236-5294
1588-2632
DOI:10.1007/s10474-006-0067-z