The algebraic degree of semidefinite programming
Given a generic semidefinite program, specified by matrices with rational entries, each coordinate of its optimal solution is an algebraic number. We study the degree of the minimal polynomials of these algebraic numbers. Geometrically, this degree counts the critical points attained by a linear fun...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2010-04, Vol.122 (2), p.379-405 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 405 |
---|---|
container_issue | 2 |
container_start_page | 379 |
container_title | Mathematical programming |
container_volume | 122 |
creator | Nie, Jiawang Ranestad, Kristian Sturmfels, Bernd |
description | Given a generic semidefinite program, specified by matrices with rational entries, each coordinate of its optimal solution is an algebraic number. We study the degree of the minimal polynomials of these algebraic numbers. Geometrically, this degree counts the critical points attained by a linear functional on a fixed rank locus in a linear space of symmetric matrices. We determine this degree using methods from complex algebraic geometry, such as projective duality, determinantal varieties, and their Chern classes. |
doi_str_mv | 10.1007/s10107-008-0253-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34946314</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1853284721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-2dbf0c572bd83bd5bf0c70a31076396d9cc1718f94dc77c1a20cc874eb5ba7d13</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN0g6C5685gks5RiVSi4qeuQSTJjyjxq0i7896ZMURBcheR-59yTg9A1gXsCIB8SAQISAygMtGRYnKAZ4UxgLrg4RTPIr7gUBM7RRUobACBMqRmC9YcvTNf6OppgC-fb6H0xNkXyfXC-CUPY-WIbxzaavg9De4nOGtMlf3U85-h9-bRevODV2_Pr4nGFLZNih6mrG7ClpLVTrHbl4SbBsBxSsEq4yloiiWoq7qyUlhgK1irJfV3WRjrC5uhu8s27P_c-7XQfkvVdZwY_7pNmvOKC5S_O0c0fcDPu45Czacqo4orwMkNkgmwcU4q-0dsYehO_NAF9KFBPBepcoD4UqEXW3B6NTbKma6IZbEg_QkoZUYxD5ujEpTwaWh9_A_xv_g2F2H6T</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232848145</pqid></control><display><type>article</type><title>The algebraic degree of semidefinite programming</title><source>SpringerNature Journals</source><source>EBSCOhost Business Source Complete</source><creator>Nie, Jiawang ; Ranestad, Kristian ; Sturmfels, Bernd</creator><creatorcontrib>Nie, Jiawang ; Ranestad, Kristian ; Sturmfels, Bernd</creatorcontrib><description>Given a generic semidefinite program, specified by matrices with rational entries, each coordinate of its optimal solution is an algebraic number. We study the degree of the minimal polynomials of these algebraic numbers. Geometrically, this degree counts the critical points attained by a linear functional on a fixed rank locus in a linear space of symmetric matrices. We determine this degree using methods from complex algebraic geometry, such as projective duality, determinantal varieties, and their Chern classes.</description><identifier>ISSN: 0025-5610</identifier><identifier>EISSN: 1436-4646</identifier><identifier>DOI: 10.1007/s10107-008-0253-6</identifier><identifier>CODEN: MHPGA4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Algebra ; Applied sciences ; Calculus of Variations and Optimal Control; Optimization ; Codes ; Combinatorics ; Equilibrium ; Eulers equations ; Exact sciences and technology ; Full Length Paper ; Game theory ; Geometry ; Linear programming ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Numerical Analysis ; Operational research and scientific management ; Operational research. Management science ; Optimization ; Semidefinite programming ; Studies ; Theoretical</subject><ispartof>Mathematical programming, 2010-04, Vol.122 (2), p.379-405</ispartof><rights>Springer-Verlag 2008</rights><rights>2015 INIST-CNRS</rights><rights>Springer and Mathematical Programming Society 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-2dbf0c572bd83bd5bf0c70a31076396d9cc1718f94dc77c1a20cc874eb5ba7d13</citedby><cites>FETCH-LOGICAL-c376t-2dbf0c572bd83bd5bf0c70a31076396d9cc1718f94dc77c1a20cc874eb5ba7d13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10107-008-0253-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10107-008-0253-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22318340$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nie, Jiawang</creatorcontrib><creatorcontrib>Ranestad, Kristian</creatorcontrib><creatorcontrib>Sturmfels, Bernd</creatorcontrib><title>The algebraic degree of semidefinite programming</title><title>Mathematical programming</title><addtitle>Math. Program</addtitle><description>Given a generic semidefinite program, specified by matrices with rational entries, each coordinate of its optimal solution is an algebraic number. We study the degree of the minimal polynomials of these algebraic numbers. Geometrically, this degree counts the critical points attained by a linear functional on a fixed rank locus in a linear space of symmetric matrices. We determine this degree using methods from complex algebraic geometry, such as projective duality, determinantal varieties, and their Chern classes.</description><subject>Algebra</subject><subject>Applied sciences</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Codes</subject><subject>Combinatorics</subject><subject>Equilibrium</subject><subject>Eulers equations</subject><subject>Exact sciences and technology</subject><subject>Full Length Paper</subject><subject>Game theory</subject><subject>Geometry</subject><subject>Linear programming</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Numerical Analysis</subject><subject>Operational research and scientific management</subject><subject>Operational research. Management science</subject><subject>Optimization</subject><subject>Semidefinite programming</subject><subject>Studies</subject><subject>Theoretical</subject><issn>0025-5610</issn><issn>1436-4646</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wN0g6C5685gks5RiVSi4qeuQSTJjyjxq0i7896ZMURBcheR-59yTg9A1gXsCIB8SAQISAygMtGRYnKAZ4UxgLrg4RTPIr7gUBM7RRUobACBMqRmC9YcvTNf6OppgC-fb6H0xNkXyfXC-CUPY-WIbxzaavg9De4nOGtMlf3U85-h9-bRevODV2_Pr4nGFLZNih6mrG7ClpLVTrHbl4SbBsBxSsEq4yloiiWoq7qyUlhgK1irJfV3WRjrC5uhu8s27P_c-7XQfkvVdZwY_7pNmvOKC5S_O0c0fcDPu45Czacqo4orwMkNkgmwcU4q-0dsYehO_NAF9KFBPBepcoD4UqEXW3B6NTbKma6IZbEg_QkoZUYxD5ujEpTwaWh9_A_xv_g2F2H6T</recordid><startdate>20100401</startdate><enddate>20100401</enddate><creator>Nie, Jiawang</creator><creator>Ranestad, Kristian</creator><creator>Sturmfels, Bernd</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20100401</creationdate><title>The algebraic degree of semidefinite programming</title><author>Nie, Jiawang ; Ranestad, Kristian ; Sturmfels, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-2dbf0c572bd83bd5bf0c70a31076396d9cc1718f94dc77c1a20cc874eb5ba7d13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>Applied sciences</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Codes</topic><topic>Combinatorics</topic><topic>Equilibrium</topic><topic>Eulers equations</topic><topic>Exact sciences and technology</topic><topic>Full Length Paper</topic><topic>Game theory</topic><topic>Geometry</topic><topic>Linear programming</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Numerical Analysis</topic><topic>Operational research and scientific management</topic><topic>Operational research. Management science</topic><topic>Optimization</topic><topic>Semidefinite programming</topic><topic>Studies</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nie, Jiawang</creatorcontrib><creatorcontrib>Ranestad, Kristian</creatorcontrib><creatorcontrib>Sturmfels, Bernd</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Mathematical programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nie, Jiawang</au><au>Ranestad, Kristian</au><au>Sturmfels, Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The algebraic degree of semidefinite programming</atitle><jtitle>Mathematical programming</jtitle><stitle>Math. Program</stitle><date>2010-04-01</date><risdate>2010</risdate><volume>122</volume><issue>2</issue><spage>379</spage><epage>405</epage><pages>379-405</pages><issn>0025-5610</issn><eissn>1436-4646</eissn><coden>MHPGA4</coden><abstract>Given a generic semidefinite program, specified by matrices with rational entries, each coordinate of its optimal solution is an algebraic number. We study the degree of the minimal polynomials of these algebraic numbers. Geometrically, this degree counts the critical points attained by a linear functional on a fixed rank locus in a linear space of symmetric matrices. We determine this degree using methods from complex algebraic geometry, such as projective duality, determinantal varieties, and their Chern classes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><doi>10.1007/s10107-008-0253-6</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5610 |
ispartof | Mathematical programming, 2010-04, Vol.122 (2), p.379-405 |
issn | 0025-5610 1436-4646 |
language | eng |
recordid | cdi_proquest_miscellaneous_34946314 |
source | SpringerNature Journals; EBSCOhost Business Source Complete |
subjects | Algebra Applied sciences Calculus of Variations and Optimal Control Optimization Codes Combinatorics Equilibrium Eulers equations Exact sciences and technology Full Length Paper Game theory Geometry Linear programming Mathematical analysis Mathematical and Computational Physics Mathematical Methods in Physics Mathematical programming Mathematics Mathematics and Statistics Mathematics of Computing Numerical Analysis Operational research and scientific management Operational research. Management science Optimization Semidefinite programming Studies Theoretical |
title | The algebraic degree of semidefinite programming |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T17%3A59%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20algebraic%20degree%20of%20semidefinite%20programming&rft.jtitle=Mathematical%20programming&rft.au=Nie,%20Jiawang&rft.date=2010-04-01&rft.volume=122&rft.issue=2&rft.spage=379&rft.epage=405&rft.pages=379-405&rft.issn=0025-5610&rft.eissn=1436-4646&rft.coden=MHPGA4&rft_id=info:doi/10.1007/s10107-008-0253-6&rft_dat=%3Cproquest_cross%3E1853284721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232848145&rft_id=info:pmid/&rfr_iscdi=true |