The algebraic degree of semidefinite programming

Given a generic semidefinite program, specified by matrices with rational entries, each coordinate of its optimal solution is an algebraic number. We study the degree of the minimal polynomials of these algebraic numbers. Geometrically, this degree counts the critical points attained by a linear fun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical programming 2010-04, Vol.122 (2), p.379-405
Hauptverfasser: Nie, Jiawang, Ranestad, Kristian, Sturmfels, Bernd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a generic semidefinite program, specified by matrices with rational entries, each coordinate of its optimal solution is an algebraic number. We study the degree of the minimal polynomials of these algebraic numbers. Geometrically, this degree counts the critical points attained by a linear functional on a fixed rank locus in a linear space of symmetric matrices. We determine this degree using methods from complex algebraic geometry, such as projective duality, determinantal varieties, and their Chern classes.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-008-0253-6