Trophic transfer of methylmercury and trace elements by tropical estuarine seston and plankton
Methylmercury (MeHg) and trace elements (TE), mercury, selenium, cadmium, lead and copper, were determined in a microbial loop composed by three size classes of autotrophic and heterotrophic microorganism samples, 1.2–70 μm (seston, SPM), 70–290 μm (microplankton) and ≥290 μm (mesoplankton) from fiv...
Gespeichert in:
Veröffentlicht in: | Estuarine, coastal and shelf science coastal and shelf science, 2009-10, Vol.85 (1), p.36-44 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Methylmercury (MeHg) and trace elements (TE), mercury, selenium, cadmium, lead and copper, were determined in a microbial loop composed by three size classes of autotrophic and heterotrophic microorganism samples, 1.2–70
μm (seston, SPM), 70–290
μm (microplankton) and ≥290
μm (mesoplankton) from five sampling stations within a polluted eutrophic estuary in the Brazilian Southeast coast and one external point under the influence of the bay. TE concentrations were within the range reported for marine microorganisms from uncontaminated locations. Microplankton was primarily composed of proto-zooplankton and diatoms (>90%) while approximately 50% of mesoplankton was composed mainly of copepods. MeHg and TE in samples did not differ among the five sampling stations within the bay. Cd, Pb and Cu in seston were higher in the stations sampled inside Guanabara Bay (0.67
μg
Cd
g
−1, 9.26
μg
Pb
g
−1, 8.03
μg Cu
g
−1) than in the external one (0.17
μg
Cd
g
−1, 3.98
μg
Pb
g
−1 and 2.09
μg
Cu
g
−1). Hg, MeHg and Se did not differ among the five points within the more eutrophic waters of the estuary and the external sampling station. The trophic transfer of MeHg and Se was observed between trophic levels from prey (seston and microplankton) to predator (mesoplankton). The successive amplification of the ratios of MeHg to Hg with increasing trophic levels from seston (43%), to microplankton (59%) and mesoplankton (77%) indicate that biomagnification may be occurring along the microbial food web. Selenium, that is efficiently accumulated by organisms through trophic transference, was biomagnified along the microbial food web, while Hg, Cd, Pb, Cu did not present the same behavior. Concentrations differed between the three size classes, indicating that MeHg and TE accumulation were size-dependent. MeHg and TE concentrations were not related to the taxonomic groups' composition of the planktonic microorganisms. Results suggest the importance of the role of the trophic level and microorganism size in regulating element transfers. Eutrophication dilution may provide a process-oriented explanation for lower MeHg and TE accumulation by the three size classes of microorganisms collected at the five sampling stations within the bay. |
---|---|
ISSN: | 0272-7714 1096-0015 |
DOI: | 10.1016/j.ecss.2009.05.027 |