Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell

In this paper thermal properties for materials typically used in the proton exchange membrane fuel cell (PEMFC) are reported. Thermal conductivities of Nafion membranes were measured ex situ at 20 °C to be 0.177 ± 0.008 and 0.254 ± 0.016 W K −1 m −1 for dry and maximally wetted membranes respectivel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of power sources 2010, Vol.195 (1), p.249-256
Hauptverfasser: Burheim, O., Vie, P.J.S., Pharoah, J.G., Kjelstrup, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 256
container_issue 1
container_start_page 249
container_title Journal of power sources
container_volume 195
creator Burheim, O.
Vie, P.J.S.
Pharoah, J.G.
Kjelstrup, S.
description In this paper thermal properties for materials typically used in the proton exchange membrane fuel cell (PEMFC) are reported. Thermal conductivities of Nafion membranes were measured ex situ at 20 °C to be 0.177 ± 0.008 and 0.254 ± 0.016 W K −1 m −1 for dry and maximally wetted membranes respectively. This paper also presents a methodology to determine the thermal conductivity of compressible materials as a function of applied load. This technique was used to measure the thermal conductivity of an uncoated SolviCore porous transport layer (PTL) at various compaction pressures. For the dry PTL at 4.6, 9.3 and 13.9 bar compaction pressures, the thermal conductivity was found to be 0.27, 0.36 and 0.40 W K −1 m −1 respectively and the thermal contact resistivity to the apparatus was determined to be 2.1, 1.8 and 1.1 × 10 −4 m 2 K W −1, respectively. It was shown that the thermal contact resistance between two PTLs is negligible compared to the apparatus’ thermal contact resistivity. For a humidified PTL, the thermal conductivity increases by up to 70% due to a residual liquid saturation of 25%.
doi_str_mv 10.1016/j.jpowsour.2009.06.077
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34946150</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0378775309011483</els_id><sourcerecordid>21072951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-1eab032b6d7ec5b6f2201803479b30c17f280ccb4c169c682af2219cba0aefae3</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouH78BclFb62TtE3amyLrBwhe9BzS7FSztE1NUj_-vVlWve5pGHjemZeHkDMGOQMmLtf5enKfwc0-5wBNDiIHKffIgtWyyLisqn2ygELWmZRVcUiOQlgDAGMSFkQtv2iwcaYD6jB7HHCMgbqOxjfv5te3bOr1iGlDP-ieGjeuZhPth40WA7Uj1XRy_feAnmKPJvq0RKTdjAnGvj8hB53uA57-zmPycrt8vrnPHp_uHm6uHzNTllXMGOoWCt6KlURTtaLjHFgNRSmbtgDDZMdrMKYtDRONETXXiWCNaTVo7DQWx-Rie3fy7n3GENVgw6ZAau_moIqyKQWrYCfIGUjeVCyBYgsa70Lw2KnJ20H7b8VAbcSrtfoTrzbiFQiVxKfg-e8HHYzuO69HY8N_OtWWpRBl4q62HCYvHxa9CsbiaHBlfTKpVs7uevUDyaSfVQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21072951</pqid></control><display><type>article</type><title>Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell</title><source>Elsevier ScienceDirect Journals</source><creator>Burheim, O. ; Vie, P.J.S. ; Pharoah, J.G. ; Kjelstrup, S.</creator><creatorcontrib>Burheim, O. ; Vie, P.J.S. ; Pharoah, J.G. ; Kjelstrup, S.</creatorcontrib><description>In this paper thermal properties for materials typically used in the proton exchange membrane fuel cell (PEMFC) are reported. Thermal conductivities of Nafion membranes were measured ex situ at 20 °C to be 0.177 ± 0.008 and 0.254 ± 0.016 W K −1 m −1 for dry and maximally wetted membranes respectively. This paper also presents a methodology to determine the thermal conductivity of compressible materials as a function of applied load. This technique was used to measure the thermal conductivity of an uncoated SolviCore porous transport layer (PTL) at various compaction pressures. For the dry PTL at 4.6, 9.3 and 13.9 bar compaction pressures, the thermal conductivity was found to be 0.27, 0.36 and 0.40 W K −1 m −1 respectively and the thermal contact resistivity to the apparatus was determined to be 2.1, 1.8 and 1.1 × 10 −4 m 2 K W −1, respectively. It was shown that the thermal contact resistance between two PTLs is negligible compared to the apparatus’ thermal contact resistivity. For a humidified PTL, the thermal conductivity increases by up to 70% due to a residual liquid saturation of 25%.</description><identifier>ISSN: 0378-7753</identifier><identifier>EISSN: 1873-2755</identifier><identifier>DOI: 10.1016/j.jpowsour.2009.06.077</identifier><identifier>CODEN: JPSODZ</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Energy ; Energy. Thermal use of fuels ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fuel cell ; Fuel cells ; Gas diffusion layer ; Nafion ; Thermal conductivity ; Water content</subject><ispartof>Journal of power sources, 2010, Vol.195 (1), p.249-256</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-1eab032b6d7ec5b6f2201803479b30c17f280ccb4c169c682af2219cba0aefae3</citedby><cites>FETCH-LOGICAL-c445t-1eab032b6d7ec5b6f2201803479b30c17f280ccb4c169c682af2219cba0aefae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0378775309011483$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,4010,27900,27901,27902,65306</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21974664$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Burheim, O.</creatorcontrib><creatorcontrib>Vie, P.J.S.</creatorcontrib><creatorcontrib>Pharoah, J.G.</creatorcontrib><creatorcontrib>Kjelstrup, S.</creatorcontrib><title>Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell</title><title>Journal of power sources</title><description>In this paper thermal properties for materials typically used in the proton exchange membrane fuel cell (PEMFC) are reported. Thermal conductivities of Nafion membranes were measured ex situ at 20 °C to be 0.177 ± 0.008 and 0.254 ± 0.016 W K −1 m −1 for dry and maximally wetted membranes respectively. This paper also presents a methodology to determine the thermal conductivity of compressible materials as a function of applied load. This technique was used to measure the thermal conductivity of an uncoated SolviCore porous transport layer (PTL) at various compaction pressures. For the dry PTL at 4.6, 9.3 and 13.9 bar compaction pressures, the thermal conductivity was found to be 0.27, 0.36 and 0.40 W K −1 m −1 respectively and the thermal contact resistivity to the apparatus was determined to be 2.1, 1.8 and 1.1 × 10 −4 m 2 K W −1, respectively. It was shown that the thermal contact resistance between two PTLs is negligible compared to the apparatus’ thermal contact resistivity. For a humidified PTL, the thermal conductivity increases by up to 70% due to a residual liquid saturation of 25%.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fuel cell</subject><subject>Fuel cells</subject><subject>Gas diffusion layer</subject><subject>Nafion</subject><subject>Thermal conductivity</subject><subject>Water content</subject><issn>0378-7753</issn><issn>1873-2755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouH78BclFb62TtE3amyLrBwhe9BzS7FSztE1NUj_-vVlWve5pGHjemZeHkDMGOQMmLtf5enKfwc0-5wBNDiIHKffIgtWyyLisqn2ygELWmZRVcUiOQlgDAGMSFkQtv2iwcaYD6jB7HHCMgbqOxjfv5te3bOr1iGlDP-ieGjeuZhPth40WA7Uj1XRy_feAnmKPJvq0RKTdjAnGvj8hB53uA57-zmPycrt8vrnPHp_uHm6uHzNTllXMGOoWCt6KlURTtaLjHFgNRSmbtgDDZMdrMKYtDRONETXXiWCNaTVo7DQWx-Rie3fy7n3GENVgw6ZAau_moIqyKQWrYCfIGUjeVCyBYgsa70Lw2KnJ20H7b8VAbcSrtfoTrzbiFQiVxKfg-e8HHYzuO69HY8N_OtWWpRBl4q62HCYvHxa9CsbiaHBlfTKpVs7uevUDyaSfVQ</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Burheim, O.</creator><creator>Vie, P.J.S.</creator><creator>Pharoah, J.G.</creator><creator>Kjelstrup, S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>2010</creationdate><title>Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell</title><author>Burheim, O. ; Vie, P.J.S. ; Pharoah, J.G. ; Kjelstrup, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-1eab032b6d7ec5b6f2201803479b30c17f280ccb4c169c682af2219cba0aefae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fuel cell</topic><topic>Fuel cells</topic><topic>Gas diffusion layer</topic><topic>Nafion</topic><topic>Thermal conductivity</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Burheim, O.</creatorcontrib><creatorcontrib>Vie, P.J.S.</creatorcontrib><creatorcontrib>Pharoah, J.G.</creatorcontrib><creatorcontrib>Kjelstrup, S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of power sources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Burheim, O.</au><au>Vie, P.J.S.</au><au>Pharoah, J.G.</au><au>Kjelstrup, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell</atitle><jtitle>Journal of power sources</jtitle><date>2010</date><risdate>2010</risdate><volume>195</volume><issue>1</issue><spage>249</spage><epage>256</epage><pages>249-256</pages><issn>0378-7753</issn><eissn>1873-2755</eissn><coden>JPSODZ</coden><abstract>In this paper thermal properties for materials typically used in the proton exchange membrane fuel cell (PEMFC) are reported. Thermal conductivities of Nafion membranes were measured ex situ at 20 °C to be 0.177 ± 0.008 and 0.254 ± 0.016 W K −1 m −1 for dry and maximally wetted membranes respectively. This paper also presents a methodology to determine the thermal conductivity of compressible materials as a function of applied load. This technique was used to measure the thermal conductivity of an uncoated SolviCore porous transport layer (PTL) at various compaction pressures. For the dry PTL at 4.6, 9.3 and 13.9 bar compaction pressures, the thermal conductivity was found to be 0.27, 0.36 and 0.40 W K −1 m −1 respectively and the thermal contact resistivity to the apparatus was determined to be 2.1, 1.8 and 1.1 × 10 −4 m 2 K W −1, respectively. It was shown that the thermal contact resistance between two PTLs is negligible compared to the apparatus’ thermal contact resistivity. For a humidified PTL, the thermal conductivity increases by up to 70% due to a residual liquid saturation of 25%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jpowsour.2009.06.077</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0378-7753
ispartof Journal of power sources, 2010, Vol.195 (1), p.249-256
issn 0378-7753
1873-2755
language eng
recordid cdi_proquest_miscellaneous_34946150
source Elsevier ScienceDirect Journals
subjects Applied sciences
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cell
Fuel cells
Gas diffusion layer
Nafion
Thermal conductivity
Water content
title Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A12%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ex%20situ%20measurements%20of%20through-plane%20thermal%20conductivities%20in%20a%20polymer%20electrolyte%20fuel%20cell&rft.jtitle=Journal%20of%20power%20sources&rft.au=Burheim,%20O.&rft.date=2010&rft.volume=195&rft.issue=1&rft.spage=249&rft.epage=256&rft.pages=249-256&rft.issn=0378-7753&rft.eissn=1873-2755&rft.coden=JPSODZ&rft_id=info:doi/10.1016/j.jpowsour.2009.06.077&rft_dat=%3Cproquest_cross%3E21072951%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21072951&rft_id=info:pmid/&rft_els_id=S0378775309011483&rfr_iscdi=true