Ex situ measurements of through-plane thermal conductivities in a polymer electrolyte fuel cell
In this paper thermal properties for materials typically used in the proton exchange membrane fuel cell (PEMFC) are reported. Thermal conductivities of Nafion membranes were measured ex situ at 20 °C to be 0.177 ± 0.008 and 0.254 ± 0.016 W K −1 m −1 for dry and maximally wetted membranes respectivel...
Gespeichert in:
Veröffentlicht in: | Journal of power sources 2010, Vol.195 (1), p.249-256 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper thermal properties for materials typically used in the proton exchange membrane fuel cell (PEMFC) are reported. Thermal conductivities of Nafion membranes were measured
ex situ at 20
°C to be 0.177
±
0.008 and 0.254
±
0.016
W
K
−1
m
−1 for dry and maximally wetted membranes respectively. This paper also presents a methodology to determine the thermal conductivity of compressible materials as a function of applied load. This technique was used to measure the thermal conductivity of an uncoated SolviCore porous transport layer (PTL) at various compaction pressures. For the dry PTL at 4.6, 9.3 and 13.9
bar compaction pressures, the thermal conductivity was found to be 0.27, 0.36 and 0.40
W
K
−1
m
−1 respectively and the thermal contact resistivity to the apparatus was determined to be 2.1, 1.8 and 1.1
×
10
−4
m
2
K
W
−1, respectively. It was shown that the thermal contact resistance between two PTLs is negligible compared to the apparatus’ thermal contact resistivity. For a humidified PTL, the thermal conductivity increases by up to 70% due to a residual liquid saturation of 25%. |
---|---|
ISSN: | 0378-7753 1873-2755 |
DOI: | 10.1016/j.jpowsour.2009.06.077 |