Synthesis of PHB nanoparticles from optimized medium utilizing dairy industrial waste using Brevibacterium casei SRKP2: A green chemistry approach

Polyhydroxyalkanoates (PHAs) are natural, biodegradable polymers accumulated by bacteria under nutritional exhausted condition where carbon source is in excess. A gram positive bacterium (designated strain SRKP2) that potentially accumulated polyhydroxybutyrate (PHB) was isolated from dairy industri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2009-11, Vol.74 (1), p.266-273
Hauptverfasser: Ram Kumar Pandian, Sureshbabu, Deepak, Venkatraman, Kalishwaralal, Kalimuthu, Muniyandi, Jeyaraj, Rameshkumar, Neelamegam, Gurunathan, Sangiliyandi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Polyhydroxyalkanoates (PHAs) are natural, biodegradable polymers accumulated by bacteria under nutritional exhausted condition where carbon source is in excess. A gram positive bacterium (designated strain SRKP2) that potentially accumulated polyhydroxybutyrate (PHB) was isolated from dairy industrial waste. From its morphological and physiological properties and nucleotide sequence of its 16S rRNA, it was suggested that strain SRKP2 was similar to Brevibacterium casei. PHAs were synthesized from a medium containing dairy waste, yeast extract and sea water. The synthesized PHAs were characterized by FT-IR as Polyhydroxybutyrate (PHB). Response surface methodology was applied to optimize the production of PHB. From the optimized medium the yield of PHB was found to be 2.940 g/L. Here we report the direct use of dairy waste and sea water as potential sources for the production of PHB. Produced PHB was used to synthesize nanoparticles using solvent displacement technique.
ISSN:0927-7765
1873-4367
DOI:10.1016/j.colsurfb.2009.07.029