Asymptotic efficiency of kernel support vector machines (SVM)

The paper analyzes the asymptotic properties of Vapnik’s SVM-estimates of a regression function as the size of the training sample tends to infinity. The estimation problem is considered as infinite-dimensional minimization of a regularized empirical risk functional in a reproducing kernel Hilbert s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cybernetics and systems analysis 2009-07, Vol.45 (4), p.575-588
Hauptverfasser: Norkin, V. I., Keyzer, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper analyzes the asymptotic properties of Vapnik’s SVM-estimates of a regression function as the size of the training sample tends to infinity. The estimation problem is considered as infinite-dimensional minimization of a regularized empirical risk functional in a reproducing kernel Hilbert space. The rate of convergence of the risk functional on SVM-estimates to its minimum value is established. The sufficient conditions for the uniform convergence of SVM-estimates to a true regression function with unit probability are given.
ISSN:1060-0396
1573-8337
DOI:10.1007/s10559-009-9125-1