Selectivity control in hydrogenation reactions by nanoconfinement of polymetallic nanoparticles in mesoporous thin films

A one-pot sol–gel synthesis method has been developed for the incorporation of metal nanoparticles into mesoporous oxide thin films deposited on various plane substrates by spin-coating and on the inner surface of fused silica capillaries by dip-coating. The size, the metal loading and the stoichiom...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. A, General General, 2009-10, Vol.368 (1), p.87-96
Hauptverfasser: Muraza, Oki, Rebrov, Evgeny V., Berenguer-Murcia, Angel, de Croon, Mart H.J.M., Schouten, Jaap C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A one-pot sol–gel synthesis method has been developed for the incorporation of metal nanoparticles into mesoporous oxide thin films deposited on various plane substrates by spin-coating and on the inner surface of fused silica capillaries by dip-coating. The size, the metal loading and the stoichiometry of the metal nanoparticles could be precisely controlled by following this methodology. A one-pot sol–gel synthesis method has been developed for the incorporation of metal nanoparticles into mesoporous oxide thin films deposited on various plane substrates by spin-coating and on the inner surface of fused silica capillaries by dip-coating. The size, the metal loading and the stoichiometry of the metal nanoparticles could be precisely controlled by following this methodology. In the first step, polymer stabilized Pt 50Sn 50 and Pt 90Sn 10 nanoparticles were obtained by a solvent-reduction method. Then, the nanoparticles were added to a metal oxide precursor sol, which was destabilized by solvent evaporation. After calcination, the obtained materials were tested in the hydrogenation of citral in both batch and continuous modes. The highest selectivity of 30% towards the unsaturated alcohols was obtained over supported Pt 90Sn 10 nanoparticles with a preferential formation of the cis-isomer (nerol) due to a unique confinement of the bimetallic nanoparticles in the mesoporous framework. The selectivity towards the unsaturated alcohols was further improved to 56% over the PtRu 5Sn nanoparticles supported by impregnation onto mesoporous silica films.
ISSN:0926-860X
1873-3875
DOI:10.1016/j.apcata.2009.08.014