Reverse thermogelling biodegradable polymer aqueous solutions
A reverse thermogelling polymer aqueous solution is a free-flowing sol at a low temperature and becomes a semisolid gel as the temperature increases. It is expected to be a very promising biomaterial as a minimally invasive injectable system for drug delivery and tissue engineering applications. The...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry 2009-01, Vol.19 (33), p.5891-5905 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A reverse thermogelling polymer aqueous solution is a free-flowing sol at a low temperature and becomes a semisolid gel as the temperature increases. It is expected to be a very promising biomaterial as a minimally invasive injectable system for drug delivery and tissue engineering applications. The principles of materials design are (1) balancing the hydrophobicity and hydrophilicty of a polymer, (2) controlling the topology of a polymer, (3) matching the degradation kinetics of a polymer with a specific biomedical application, and (4) controlling the biocompatibility of the material with a drug as well as a host. This article covers recent progress of reverse theromogelling biodegradable polymers based on aliphatic polyesters, polyphosphazenes, poloxamer derivatives, polysaccharides, polypeptides, poly(propylene phosphate)s, polyorthoesters, polycarbonates, polycyanoacrylates, and poly(N-(2-hydroxyethyl) methacrylamide-lactate)s. The material characteristics, driving forces or mechanism for sol-gel transition, and their biomedical applications are summarized. In addition, the authors' perspectives on future reverse theromogelling materials design are suggested. |
---|---|
ISSN: | 0959-9428 1364-5501 |
DOI: | 10.1039/b902208b |