Equations in finite fields with restricted solution sets. I (Character sums)
In earlier papers, for “large” (but otherwise unspecified) subsets A , B of Z p and for h ( x ) ∈ Z p [ x ], Gyarmati studied the solvability of the equations a + b = h ( x ), resp. ab = h ( x ) with a ∈ A , b ∈ B , x ∈ Z p , and for large subsets A , B , C , D of Z p Sárközy showed the solvability...
Gespeichert in:
Veröffentlicht in: | Acta mathematica Hungarica 2008, Vol.118 (1-2), p.129-148 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In earlier papers, for “large” (but otherwise unspecified) subsets
A
,
B
of
Z
p
and for
h
(
x
) ∈
Z
p
[
x
], Gyarmati studied the solvability of the equations
a
+
b
=
h
(
x
), resp.
ab
=
h
(
x
) with
a
∈
A
,
b
∈
B
,
x
∈
Z
p
, and for large subsets
A
,
B
,
C
,
D
of
Z
p
Sárközy showed the solvability of the equations
a
+
b
=
cd
, resp.
ab
+ 1 =
cd
with
a
∈
A
,
b
∈
B
,
c
∈
C
,
d
∈
D
. In this series of papers equations of this type will be studied in finite fields. In particular, in Part I of the series we will prove the necessary character sum estimates of independent interest some of which generalize earlier results. |
---|---|
ISSN: | 0236-5294 1588-2632 |
DOI: | 10.1007/s10474-007-6192-5 |