Practical Integrated Design Strategies for Opaque and All-Optical DWDM Networks: Optimization Models and Solution Procedures
Dense wavelength division multiplexing (DWDM) opaque networks use expensive optical/electrical/optical (O/E/O) conversion at each end of a fiber link. Several technological advances have been used in an attempt to reduce the O/E/O conversion cost component: improved optical amplifiers using distribu...
Gespeichert in:
Veröffentlicht in: | Telecommunication systems 2006-01, Vol.31 (1), p.61-83 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dense wavelength division multiplexing (DWDM) opaque networks use expensive optical/electrical/optical (O/E/O) conversion at each end of a fiber link. Several technological advances have been used in an attempt to reduce the O/E/O conversion cost component: improved optical amplifiers using distributed Raman amplification allow signals to traverse longer distances without amplification and/or regeneration; optical switches allow the signal to remain in the optical domain most of the time. Networks that use this equipment to eliminate some of the O/E/O conversions are called transparent or all-optical networks and benefit from reduced capital costs at the expense of operational costs and complexity in order to handle potential adjustments in traffic demand. In this investigation, we develop optimization-based algorithms for DWDM network design and traffic routing for both opaque and all-optical networks. This study compares the performance of AMPL/CPLEX implementations of both algorithms on realistically sized networks with up to 36 nodes and 67 links. |
---|---|
ISSN: | 1018-4864 1572-9451 |
DOI: | 10.1007/s11235-006-5523-0 |