Process integration for the conversion of glucose to 2,5-furandicarboxylic acid
The development of biorefineries means that a key feedstock for many new processes will be sugars in various forms, such as glucose or fructose. From these feedstocks a range of chemicals can be synthesized using heterogeneous catalysis, immobilized enzymes, homogeneous catalysts, soluble enzymes, f...
Gespeichert in:
Veröffentlicht in: | Chemical engineering research & design 2009-09, Vol.87 (9), p.1318-1327 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of biorefineries means that a key feedstock for many new processes will be sugars in various forms, such as glucose or fructose. From these feedstocks a range of chemicals can be synthesized using heterogeneous catalysis, immobilized enzymes, homogeneous catalysts, soluble enzymes, fermentations or combinations thereof. This presents a particularly interesting process integration challenge since the optimal conditions for each conversion step will be considerably different from each other. Furthermore, compared to oil-based refineries the feedstock represents a relatively high proportion of the final product value and therefore yield and selectivity in these steps are of crucial importance. In this paper using the conversion of glucose to 2,5-furandicarboxylic acid and associated products as an example, alternative routes will be compared with respect to achievable selectivity, and achievable yield. |
---|---|
ISSN: | 0263-8762 |
DOI: | 10.1016/j.cherd.2009.06.010 |