On the Relative and Absolute Positioning Errors in Self-Localization Systems

This paper considers the accuracy of sensor node location estimates from self-calibration in sensor networks. The total parameter space is shown to have a natural decomposition into relative and centroid transformation components. A linear representation of the transformation parameter space is show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2008-11, Vol.56 (11), p.5668-5679
Hauptverfasser: Ash, J.N., Moses, R.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5679
container_issue 11
container_start_page 5668
container_title IEEE transactions on signal processing
container_volume 56
creator Ash, J.N.
Moses, R.L.
description This paper considers the accuracy of sensor node location estimates from self-calibration in sensor networks. The total parameter space is shown to have a natural decomposition into relative and centroid transformation components. A linear representation of the transformation parameter space is shown to coincide with the nullspace of the unconstrained Fisher information matrix (FIM). The centroid transformation subspace-which includes representations of rotation, translation, and scaling-is characterized for a number of measurement models including distance, time-of-arrival (TOA), time-difference-of-arrival (TDOA), angle-of-arrival (AOA), and angle-difference-of-arrival (ADOA) measurements. The error decomposition may be applied to any localization algorithm in order to better understand its performance characteristics, and it may be applied to the Cramer-Rao bound (CRB) to determine performance limits in the relative and transformation domains. A geometric interpretation of the constrained CRB is provided based on the principal angles between the measurement subspace and the constraint subspace. Examples are presented to illustrate the utility of the proposed error decomposition into relative and transformation components.
doi_str_mv 10.1109/TSP.2008.927072
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_34903214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4542553</ieee_id><sourcerecordid>2328833151</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-1cdb32688b04a248cc0d81607a03f62347e0f8de9fdeb92a1db1e323f0c16f1a3</originalsourceid><addsrcrecordid>eNp9kb1rHDEQxZeQQBzbdYo0IpCQZs8zklbSlsY4H3Bgk7MhndBqR4nM3sqR9gL2Xx8dZ1ykSDUD83sP5r2meYuwQoT-7GZzveIAZtVzDZq_aI6wl9iC1Opl3aETbWf0j9fNm1LuAFDKXh0166uZLb-IfafJLfEPMTeP7HwoadotxK5TiUtMc5x_ssucUy4szmxDU2jXybspPrr9mW0eykLbctK8Cm4qdPo0j5vbz5c3F1_b9dWXbxfn69YLw5cW_TgIrowZQDoujfcwGlSgHYiguJCaIJiR-jDS0HOH44AkuAjgUQV04rj5ePC9z-n3jspit7F4miY3U9oVK2QPgqOs4Kf_gqg08hoE6oq-_we9S7s81zesUYJ3HA1U6OwA-ZxKyRTsfY5blx8sgt23YGsLdt-CPbRQFR-ebF2pgYXsZh_Ls4yD1saornLvDlwkouez7CTvOiH-AkWFjvY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863252180</pqid></control><display><type>article</type><title>On the Relative and Absolute Positioning Errors in Self-Localization Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Ash, J.N. ; Moses, R.L.</creator><creatorcontrib>Ash, J.N. ; Moses, R.L.</creatorcontrib><description>This paper considers the accuracy of sensor node location estimates from self-calibration in sensor networks. The total parameter space is shown to have a natural decomposition into relative and centroid transformation components. A linear representation of the transformation parameter space is shown to coincide with the nullspace of the unconstrained Fisher information matrix (FIM). The centroid transformation subspace-which includes representations of rotation, translation, and scaling-is characterized for a number of measurement models including distance, time-of-arrival (TOA), time-difference-of-arrival (TDOA), angle-of-arrival (AOA), and angle-difference-of-arrival (ADOA) measurements. The error decomposition may be applied to any localization algorithm in order to better understand its performance characteristics, and it may be applied to the Cramer-Rao bound (CRB) to determine performance limits in the relative and transformation domains. A geometric interpretation of the constrained CRB is provided based on the principal angles between the measurement subspace and the constraint subspace. Examples are presented to illustrate the utility of the proposed error decomposition into relative and transformation components.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2008.927072</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Applied sciences ; Ash ; Constrained estimation ; Coordinate measuring machines ; CramÉr-Rao bound (CRB) ; Decomposition ; Detection, estimation, filtering, equalization, prediction ; Errors ; Exact sciences and technology ; Goniometers ; Information, signal and communications theory ; localization ; Mathematical models ; Matrix decomposition ; Miscellaneous ; Monitoring ; Position (location) ; Position measurement ; principal angles ; Representations ; Rotation measurement ; sensor networks ; Sensor systems ; Sensors ; Signal and communications theory ; Signal processing ; Signal, noise ; singular fisher information ; Studies ; Subspace constraints ; Subspaces ; Telecommunications and information theory ; Time difference of arrival ; Transformations</subject><ispartof>IEEE transactions on signal processing, 2008-11, Vol.56 (11), p.5668-5679</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-1cdb32688b04a248cc0d81607a03f62347e0f8de9fdeb92a1db1e323f0c16f1a3</citedby><cites>FETCH-LOGICAL-c382t-1cdb32688b04a248cc0d81607a03f62347e0f8de9fdeb92a1db1e323f0c16f1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4542553$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4542553$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20778865$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ash, J.N.</creatorcontrib><creatorcontrib>Moses, R.L.</creatorcontrib><title>On the Relative and Absolute Positioning Errors in Self-Localization Systems</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>This paper considers the accuracy of sensor node location estimates from self-calibration in sensor networks. The total parameter space is shown to have a natural decomposition into relative and centroid transformation components. A linear representation of the transformation parameter space is shown to coincide with the nullspace of the unconstrained Fisher information matrix (FIM). The centroid transformation subspace-which includes representations of rotation, translation, and scaling-is characterized for a number of measurement models including distance, time-of-arrival (TOA), time-difference-of-arrival (TDOA), angle-of-arrival (AOA), and angle-difference-of-arrival (ADOA) measurements. The error decomposition may be applied to any localization algorithm in order to better understand its performance characteristics, and it may be applied to the Cramer-Rao bound (CRB) to determine performance limits in the relative and transformation domains. A geometric interpretation of the constrained CRB is provided based on the principal angles between the measurement subspace and the constraint subspace. Examples are presented to illustrate the utility of the proposed error decomposition into relative and transformation components.</description><subject>Applied sciences</subject><subject>Ash</subject><subject>Constrained estimation</subject><subject>Coordinate measuring machines</subject><subject>CramÉr-Rao bound (CRB)</subject><subject>Decomposition</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Errors</subject><subject>Exact sciences and technology</subject><subject>Goniometers</subject><subject>Information, signal and communications theory</subject><subject>localization</subject><subject>Mathematical models</subject><subject>Matrix decomposition</subject><subject>Miscellaneous</subject><subject>Monitoring</subject><subject>Position (location)</subject><subject>Position measurement</subject><subject>principal angles</subject><subject>Representations</subject><subject>Rotation measurement</subject><subject>sensor networks</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Signal and communications theory</subject><subject>Signal processing</subject><subject>Signal, noise</subject><subject>singular fisher information</subject><subject>Studies</subject><subject>Subspace constraints</subject><subject>Subspaces</subject><subject>Telecommunications and information theory</subject><subject>Time difference of arrival</subject><subject>Transformations</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNp9kb1rHDEQxZeQQBzbdYo0IpCQZs8zklbSlsY4H3Bgk7MhndBqR4nM3sqR9gL2Xx8dZ1ykSDUD83sP5r2meYuwQoT-7GZzveIAZtVzDZq_aI6wl9iC1Opl3aETbWf0j9fNm1LuAFDKXh0166uZLb-IfafJLfEPMTeP7HwoadotxK5TiUtMc5x_ssucUy4szmxDU2jXybspPrr9mW0eykLbctK8Cm4qdPo0j5vbz5c3F1_b9dWXbxfn69YLw5cW_TgIrowZQDoujfcwGlSgHYiguJCaIJiR-jDS0HOH44AkuAjgUQV04rj5ePC9z-n3jspit7F4miY3U9oVK2QPgqOs4Kf_gqg08hoE6oq-_we9S7s81zesUYJ3HA1U6OwA-ZxKyRTsfY5blx8sgt23YGsLdt-CPbRQFR-ebF2pgYXsZh_Ls4yD1saornLvDlwkouez7CTvOiH-AkWFjvY</recordid><startdate>20081101</startdate><enddate>20081101</enddate><creator>Ash, J.N.</creator><creator>Moses, R.L.</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20081101</creationdate><title>On the Relative and Absolute Positioning Errors in Self-Localization Systems</title><author>Ash, J.N. ; Moses, R.L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-1cdb32688b04a248cc0d81607a03f62347e0f8de9fdeb92a1db1e323f0c16f1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Applied sciences</topic><topic>Ash</topic><topic>Constrained estimation</topic><topic>Coordinate measuring machines</topic><topic>CramÉr-Rao bound (CRB)</topic><topic>Decomposition</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Errors</topic><topic>Exact sciences and technology</topic><topic>Goniometers</topic><topic>Information, signal and communications theory</topic><topic>localization</topic><topic>Mathematical models</topic><topic>Matrix decomposition</topic><topic>Miscellaneous</topic><topic>Monitoring</topic><topic>Position (location)</topic><topic>Position measurement</topic><topic>principal angles</topic><topic>Representations</topic><topic>Rotation measurement</topic><topic>sensor networks</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Signal and communications theory</topic><topic>Signal processing</topic><topic>Signal, noise</topic><topic>singular fisher information</topic><topic>Studies</topic><topic>Subspace constraints</topic><topic>Subspaces</topic><topic>Telecommunications and information theory</topic><topic>Time difference of arrival</topic><topic>Transformations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ash, J.N.</creatorcontrib><creatorcontrib>Moses, R.L.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ash, J.N.</au><au>Moses, R.L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Relative and Absolute Positioning Errors in Self-Localization Systems</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2008-11-01</date><risdate>2008</risdate><volume>56</volume><issue>11</issue><spage>5668</spage><epage>5679</epage><pages>5668-5679</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>This paper considers the accuracy of sensor node location estimates from self-calibration in sensor networks. The total parameter space is shown to have a natural decomposition into relative and centroid transformation components. A linear representation of the transformation parameter space is shown to coincide with the nullspace of the unconstrained Fisher information matrix (FIM). The centroid transformation subspace-which includes representations of rotation, translation, and scaling-is characterized for a number of measurement models including distance, time-of-arrival (TOA), time-difference-of-arrival (TDOA), angle-of-arrival (AOA), and angle-difference-of-arrival (ADOA) measurements. The error decomposition may be applied to any localization algorithm in order to better understand its performance characteristics, and it may be applied to the Cramer-Rao bound (CRB) to determine performance limits in the relative and transformation domains. A geometric interpretation of the constrained CRB is provided based on the principal angles between the measurement subspace and the constraint subspace. Examples are presented to illustrate the utility of the proposed error decomposition into relative and transformation components.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2008.927072</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2008-11, Vol.56 (11), p.5668-5679
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_34903214
source IEEE Electronic Library (IEL)
subjects Applied sciences
Ash
Constrained estimation
Coordinate measuring machines
CramÉr-Rao bound (CRB)
Decomposition
Detection, estimation, filtering, equalization, prediction
Errors
Exact sciences and technology
Goniometers
Information, signal and communications theory
localization
Mathematical models
Matrix decomposition
Miscellaneous
Monitoring
Position (location)
Position measurement
principal angles
Representations
Rotation measurement
sensor networks
Sensor systems
Sensors
Signal and communications theory
Signal processing
Signal, noise
singular fisher information
Studies
Subspace constraints
Subspaces
Telecommunications and information theory
Time difference of arrival
Transformations
title On the Relative and Absolute Positioning Errors in Self-Localization Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T00%3A37%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Relative%20and%20Absolute%20Positioning%20Errors%20in%20Self-Localization%20Systems&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Ash,%20J.N.&rft.date=2008-11-01&rft.volume=56&rft.issue=11&rft.spage=5668&rft.epage=5679&rft.pages=5668-5679&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2008.927072&rft_dat=%3Cproquest_RIE%3E2328833151%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=863252180&rft_id=info:pmid/&rft_ieee_id=4542553&rfr_iscdi=true