On the Relative and Absolute Positioning Errors in Self-Localization Systems

This paper considers the accuracy of sensor node location estimates from self-calibration in sensor networks. The total parameter space is shown to have a natural decomposition into relative and centroid transformation components. A linear representation of the transformation parameter space is show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2008-11, Vol.56 (11), p.5668-5679
Hauptverfasser: Ash, J.N., Moses, R.L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers the accuracy of sensor node location estimates from self-calibration in sensor networks. The total parameter space is shown to have a natural decomposition into relative and centroid transformation components. A linear representation of the transformation parameter space is shown to coincide with the nullspace of the unconstrained Fisher information matrix (FIM). The centroid transformation subspace-which includes representations of rotation, translation, and scaling-is characterized for a number of measurement models including distance, time-of-arrival (TOA), time-difference-of-arrival (TDOA), angle-of-arrival (AOA), and angle-difference-of-arrival (ADOA) measurements. The error decomposition may be applied to any localization algorithm in order to better understand its performance characteristics, and it may be applied to the Cramer-Rao bound (CRB) to determine performance limits in the relative and transformation domains. A geometric interpretation of the constrained CRB is provided based on the principal angles between the measurement subspace and the constraint subspace. Examples are presented to illustrate the utility of the proposed error decomposition into relative and transformation components.
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2008.927072