Electrochemical behavior of ruthenium (III), rhodium (III) and palladium (II) in 1-butyl-3-methylimidazolium chloride ionic liquid

Electrochemical behavior of ruthenium (III), rhodium (III) and palladium (II) in 1-butyl-3-methylimidazolium chloride (bmimCl) and their ternary and binary solutions in bmimCl was studied at various working electrodes at 373 K by cyclic voltammetry and chronoamperometry. Ruthenium (III) chloride for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2009-11, Vol.54 (26), p.6747-6755
Hauptverfasser: Jayakumar, M., Venkatesan, K.A., Srinivasan, T.G., Vasudeva Rao, P.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Electrochemical behavior of ruthenium (III), rhodium (III) and palladium (II) in 1-butyl-3-methylimidazolium chloride (bmimCl) and their ternary and binary solutions in bmimCl was studied at various working electrodes at 373 K by cyclic voltammetry and chronoamperometry. Ruthenium (III) chloride forms a stable solution with bmimCl and the cyclic voltammogram of ruthenium (III) in bmimCl recorded at glassy carbon electrode consisted of several redox waves due to the complex nature of ruthenium to exist in several oxidation states. Electrolysis of ruthenium (III) chloride in bmimCl at the cathodic limit of bmimCl (−1.8 V (vs. Pd)) did not result in ruthenium metal deposition. However, it was deposited from bmimPF 6 and bmimNTf 2 room temperature ionic liquids at −0.8 V (vs. Pd). The electrochemical behavior of ruthenium (III) in bmimCl in the presence of palladium (II) and rhodium (III) was studied by cyclic voltammetry. The presence of palladium (II) in bmimCl favors underpotential deposition of ruthenium metal. The nuclear loop at −0.5 V (vs. Pd) was observed in all solutions when palladium (II) co-existed with other two metal ions. Nucleation and growth of the metal on glassy carbon working electrode was investigated by chronoamperometry. The growth and decay of chronocurrents has been found to follow the instantaneous nucleation model with three-dimensional growth of nuclei.
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2009.06.043