Minimum Distance between Pattern Transformation Manifolds: Algorithm and Applications

Transformation invariance is an important property in pattern recognition, where different observations of the same object typically receive the same label. This paper focuses on a transformation-invariant distance measure that represents the minimum distance between the transformation manifolds spa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2009-07, Vol.31 (7), p.1225-1238
Hauptverfasser: Kokiopoulou, E., Frossard, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Transformation invariance is an important property in pattern recognition, where different observations of the same object typically receive the same label. This paper focuses on a transformation-invariant distance measure that represents the minimum distance between the transformation manifolds spanned by patterns of interest. Since these manifolds are typically nonlinear, the computation of the manifold distance (MD) becomes a nonconvex optimization problem. We propose representing a pattern of interest as a linear combination of a few geometric functions extracted from a structured and redundant basis. Transforming the pattern results in the transformation of its constituent parts. We show that, when the transformation is restricted to a synthesis of translations, rotations, and isotropic scalings, such a pattern representation results in a closed-form expression of the manifold equation with respect to the transformation parameters. The MD computation can then be formulated as a minimization problem whose objective function is expressed as the difference of convex functions (DC). This interesting property permits optimally solving the optimization problem with DC programming solvers that are globally convergent. We present experimental evidence which shows that our method is able to find the globally optimal solution, outperforming existing methods that yield suboptimal solutions.
ISSN:0162-8828
1939-3539
DOI:10.1109/TPAMI.2008.156