Hazardous gas dispersion: A CFD model accounting for atmospheric stability classes

Nowadays, thanks to the increasing CPU power the use of Computational Fluid Dynamics (CFD) is rapidly imposing also in the industrial risk assessment area, replacing integral models when particular situations, such as those involving complex terrains or large obstacles, are involved. Nevertheless, c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2009-11, Vol.171 (1), p.739-747
Hauptverfasser: Pontiggia, M., Derudi, M., Busini, V., Rota, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nowadays, thanks to the increasing CPU power the use of Computational Fluid Dynamics (CFD) is rapidly imposing also in the industrial risk assessment area, replacing integral models when particular situations, such as those involving complex terrains or large obstacles, are involved. Nevertheless, commercial CFD codes usually do not provide specific turbulence model for simulating atmospheric stratification effects, which are accounted of by the integral models through the well-known stability-class approach. In this work, a new approach able to take account of atmospheric features in CFD simulations has been developed and validated by comparison with available experimental data.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2009.06.064