Fast and Robust Face Detection on a Parallel Optimized Architecture Implemented on FPGA

In this paper, we present a parallel architecture for fast and robust face detection implemented on FPGA hardware. We propose the first implementation that meets both real-time requirements in an embedded context and face detection robustness within complex backgrounds. The chosen face detection met...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on circuits and systems for video technology 2009-04, Vol.19 (4), p.597-602
Hauptverfasser: Farrugia, N., Mamalet, F., Roux, S., Fan Yang, Paindavoine, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present a parallel architecture for fast and robust face detection implemented on FPGA hardware. We propose the first implementation that meets both real-time requirements in an embedded context and face detection robustness within complex backgrounds. The chosen face detection method is the Convolutional Face Finder (CFF) algorithm, which consists of a pipeline of convolution and subsampling operations, followed by a multilayer perceptron. We present the design methodology of our face detection processor element (PE). This methodology was followed in order to optimize our implementation in terms of memory usage and parallelization efficiency. We then built a parallel architecture composed of a PE ring and an FIFO memory, resulting in a scalable system capable of processing images of different sizes. A ring of 25 PEs running at 80 MHz is able to process 127 QVGA images per second and performing real-time face detection on VGA images (35 images per second).
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2009.2014013