Hardness results and approximation algorithms for (weighted) paired-domination in graphs
Let G = ( V , E ) be a simple graph without isolated vertices. A vertex set S ⊆ V is a paired-dominating set if every vertex in V − S has a neighbor in S and the induced subgraph G [ S ] has a perfect matching. In this paper, we investigate the approximation hardness of paired-domination in graphs....
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2009-11, Vol.410 (47), p.5063-5071 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
G
=
(
V
,
E
)
be a simple graph without isolated vertices. A vertex set
S
⊆
V
is a paired-dominating set if every vertex in
V
−
S
has a neighbor in
S
and the induced subgraph
G
[
S
]
has a perfect matching. In this paper, we investigate the approximation hardness of paired-domination in graphs. For weighted paired-domination, an approximation algorithm in general graphs and an exact dynamic programming style algorithm in trees are also given. |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2009.08.004 |