Hardness results and approximation algorithms for (weighted) paired-domination in graphs

Let G = ( V , E ) be a simple graph without isolated vertices. A vertex set S ⊆ V is a paired-dominating set if every vertex in V − S has a neighbor in S and the induced subgraph G [ S ] has a perfect matching. In this paper, we investigate the approximation hardness of paired-domination in graphs....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical computer science 2009-11, Vol.410 (47), p.5063-5071
Hauptverfasser: Chen, Lei, Lu, Changhong, Zeng, Zhenbing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G = ( V , E ) be a simple graph without isolated vertices. A vertex set S ⊆ V is a paired-dominating set if every vertex in V − S has a neighbor in S and the induced subgraph G [ S ] has a perfect matching. In this paper, we investigate the approximation hardness of paired-domination in graphs. For weighted paired-domination, an approximation algorithm in general graphs and an exact dynamic programming style algorithm in trees are also given.
ISSN:0304-3975
1879-2294
DOI:10.1016/j.tcs.2009.08.004