Binary words with a given Diophantine exponent
We prove that every real number ξ ≥ 1 is the Diophantine exponent of some binary word ω . More precisely, we show that Dio ( ω ) = ξ for ω = 1 0 k 1 1 0 k 2 1 0 k 3 ⋯ , where k n = [ ξ n ] for ξ ≥ 2 , k n = [ ν n ] with ν = ( − ξ + 1 + 6 ξ − 3 ξ 2 + 1 ) / ( 4 − 2 ξ ) for 1 < ξ < 2 , and k n =...
Gespeichert in:
Veröffentlicht in: | Theoretical computer science 2009-11, Vol.410 (47), p.5191-5195 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that every real number
ξ
≥
1
is the Diophantine exponent of some binary word
ω
. More precisely, we show that
Dio
(
ω
)
=
ξ
for
ω
=
1
0
k
1
1
0
k
2
1
0
k
3
⋯
, where
k
n
=
[
ξ
n
]
for
ξ
≥
2
,
k
n
=
[
ν
n
]
with
ν
=
(
−
ξ
+
1
+
6
ξ
−
3
ξ
2
+
1
)
/
(
4
−
2
ξ
)
for
1
<
ξ
<
2
, and
k
n
=
n
for
ξ
=
1
. |
---|---|
ISSN: | 0304-3975 1879-2294 |
DOI: | 10.1016/j.tcs.2009.08.013 |