Steel–concrete bond strength of lightweight self-consolidating concrete

The bond behavior of lightweight self-consolidating concrete (LWSCC) must be understood in order to use this type of high performance concrete in structural members. The objective of this research program is to assess the bond behavior of reinforcing steel bars embedded in LWSCC members. Three diffe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials and structures 2009-08, Vol.42 (7), p.1015-1023
Hauptverfasser: Lachemi, M., Bae, S., Hossain, K. M. A., Sahmaran, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The bond behavior of lightweight self-consolidating concrete (LWSCC) must be understood in order to use this type of high performance concrete in structural members. The objective of this research program is to assess the bond behavior of reinforcing steel bars embedded in LWSCC members. Three different classes of LWSCC mixtures were developed with two different types of lightweight aggregates. In addition, one normal weight SCC (NWSCC) was developed and used as a control mixture. A total of twenty four pullout tests were conducted on deformed reinforcing bars with an embedded length of either 100 or 200 mm and the load-slip responses, failure modes and bond strengths of LWSCC and NWSCC were compared. Based on the results of this study, the bond strength of deformed bars for LWSCCs are found to be less (between 16 and 38%) as compared with NWSCC. Under the conditions of equivalent workability properties and compressive strength, bond slip properties were shown to be significantly influenced by the type of lightweight aggregate used. In this study, the use of expanded shale in the production of LWSCC significantly enhanced the pullout strength when compared with lightweight slag aggregate.
ISSN:1359-5997
1871-6873
DOI:10.1617/s11527-008-9440-4