THE DYADIC DERIVATIVE AND CESARO MEAN OF BANACH-VALUED MARTINGALES

In this article, the Banach space X and the martingales with values in it are considered. It is shown that the maximal operators of the one-dimensional dyadic derivative of the dyadic integral and Cesaro means are bounded from the dyadic Hardy- Lorentz space pH^-ra(X) to Lra(X) when X is isomorphic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica scientia 2009-03, Vol.29 (2), p.265-275
1. Verfasser: 陈丽红 刘培德
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, the Banach space X and the martingales with values in it are considered. It is shown that the maximal operators of the one-dimensional dyadic derivative of the dyadic integral and Cesaro means are bounded from the dyadic Hardy- Lorentz space pH^-ra(X) to Lra(X) when X is isomorphic to a p-uniformly smooth space (1 〈p ≤ 2). And it is also bounded from Hra(X) to Lra(X) (0 〈 r 〈 ∞,0 〈 a≤oc) when X has Radon-Nikodym property. In addition, some weak-type inequalities are given.
ISSN:0252-9602
1572-9087
DOI:10.1016/S0252-9602(09)60027-8