Free in-plane vibration of general curved beams using finite element method

The governing differential equations for the free in-plane vibration of uniform and non-uniform curved beams with variable curvatures, including the effects of the axis extensibility, shear deformation and the rotary inertia, are derived using the extended-Hamilton principle. These equations were th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of sound and vibration 2008-12, Vol.318 (4), p.850-867
Hauptverfasser: Yang, F., Sedaghati, R., Esmailzadeh, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The governing differential equations for the free in-plane vibration of uniform and non-uniform curved beams with variable curvatures, including the effects of the axis extensibility, shear deformation and the rotary inertia, are derived using the extended-Hamilton principle. These equations were then solved numerically utilizing the Galerkin finite element method and the curvilinear integral taken along the central line of the curvilinear beam. Based on the proposed finite element formulation, one can easily study curved beams having different geometrical and boundary conditions. Furthermore, those curved beams, excluding the effects of the axis extensibility, shear deformation and the rotary inertia, are modeled and then solved utilizing the finite element method using a new non-isoparametric element. The results for the natural frequencies, modal shapes and the deformed configurations are presented for different types of the curved beams with various geometrical properties and boundary conditions, and in order to illustrate the validity and accuracy of the presented methodology they are compared with those published in literature.
ISSN:0022-460X
1095-8568
DOI:10.1016/j.jsv.2008.04.041