An Eulerian multiplicative constitutive model of finite elastoplasticity
An Eulerian rate-independent constitutive model for isotropic materials undergoing finite elastoplastic deformation is formulated. Entirely fulfilling the multiplicative decomposition of the deformation gradient, a constitutive equation and the coupled elastoplastic spin of the objective corotationa...
Gespeichert in:
Veröffentlicht in: | European journal of mechanics, A, Solids A, Solids, 2009-11, Vol.28 (6), p.1088-1097 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An Eulerian rate-independent constitutive model for isotropic materials undergoing finite elastoplastic deformation is formulated. Entirely fulfilling the multiplicative decomposition of the deformation gradient, a constitutive equation and the coupled elastoplastic spin of the objective corotational rate therein are explicitly derived. For the purely elastic deformation, the model degenerates into a hypoelastic-type equation with the Green–Naghdi rate. For the small elastic- and rigid-plastic deformations, the model converges to the widely-used additive model where the Jaumann rate is used. Finally, as an illustration, using a combined exponential isotropic-nonlinear kinematic hardening pattern, the finite simple shear deformation is analyzed and a comparison is made with the experimental findings in the literature. |
---|---|
ISSN: | 0997-7538 1873-7285 |
DOI: | 10.1016/j.euromechsol.2009.05.002 |