Hydrodynamic study of vertical lift tubes: Determination of flow regime by signal analysis

Vertical lift tubes have been implemented to enhance the heat transfer between a central fluidized bed combustor and an annular fluidized bed reactor. The increase in heat transfer resulting from the use of lift tubes has been characterized and successfully correlated with the hydrodynamics of the g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Powder technology 2009-11, Vol.196 (1), p.74-79
Hauptverfasser: Jacobson, M., Ferrante, L., Briens, C., Berruti, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Vertical lift tubes have been implemented to enhance the heat transfer between a central fluidized bed combustor and an annular fluidized bed reactor. The increase in heat transfer resulting from the use of lift tubes has been characterized and successfully correlated with the hydrodynamics of the gas–solid flow within the lift tubes. The increase is maximized at the beginning of the transition between dense and dilute phase transport. Pressure signals at various locations in the lift tube and at its inlet have been analyzed to identify the transition point. The beginning of the transition can be identified using Fourier and Haar wavelet power spectral analysis. These conclusions have been confirmed with video analysis. By using this analysis on the pressure signals in industrial applications, the heat transfer increase from the lift tubes can be optimized. Vertical lift tubes, within an annular fluidized bed combustor, have increased heat transfer when solids transport within the tube is at the transition between dense and dilute phase flow. Fourier and wavelet analysis of pressure signals were used to determine the transition point. The transition point was confirmed using video analysis. [Display omitted]
ISSN:0032-5910
1873-328X
DOI:10.1016/j.powtec.2009.07.008