Hydrothermal alteration as a trigger mechanism for earthquake swarms: the Vogtland/NW Bohemia region as a case study
Earthquake swarms occur mostly in regions with CO2-enriched pore fluids. It is generally accepted that both geodynamic stress accumulation and critical pore fluid pressures act as a triggering mechanism for most seismic events. The new thesis presented here is that hydrothermal alteration processes...
Gespeichert in:
Veröffentlicht in: | Geophysical journal international 2009-07, Vol.178 (1), p.1-13 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Earthquake swarms occur mostly in regions with CO2-enriched pore fluids. It is generally accepted that both geodynamic stress accumulation and critical pore fluid pressures act as a triggering mechanism for most seismic events. The new thesis presented here is that hydrothermal alteration processes in fault zones help facilitate the shear failure propagation due to mechanical weakening and dissolution of the wall rock, in addition to the normal shear stress and fluid overpressure. The basic idea that stress corrosion cracking results from chemical weakening and comminution has been discussed for many years. However, it has not yet been applied to explain the earthquake swarm phenomenon. Studies of extensive alteration as well as the latest investigations of CO2 sequestration give evidence that these high dissolution rates of wall rock in contact with an acid fluid phase exist in seismogenic fault zones. Several indications support the assumption that in the Vogtland/NW Bohemia region, the weakening of stressed fault zones by hydrothermal alteration could take place at seismogenic depths and could generate earthquake swarms. Investigations of quartz samples from the fracture zones by means of cathodoluminescence as well as spatiotemporal analysis of seismicity and numerical modelling of alteration-induced earthquake swarms support this hypothesis. |
---|---|
ISSN: | 0956-540X 1365-246X |
DOI: | 10.1111/j.1365-246X.2009.04138.x |