Effects of the fiber surface characteristics on the interfacial microstructure and mechanical properties of the KD SiC fiber reinforced SiC matrix composites

SiC fiber reinforced SiC matrix (SiC f/SiC) composites, employing two types of KD SiC fibers (from National University of Defense Technology, China) with different fiber surface characteristics as reinforcements, were fabricated by precursor infiltration and pyrolysis (PIP) process. The fiber surfac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2009-11, Vol.525 (1), p.121-127
Hauptverfasser: Liu, Haitao, Cheng, Haifeng, Wang, Jun, Tang, Gengping, Che, Renchao, Ma, Qingsong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SiC fiber reinforced SiC matrix (SiC f/SiC) composites, employing two types of KD SiC fibers (from National University of Defense Technology, China) with different fiber surface characteristics as reinforcements, were fabricated by precursor infiltration and pyrolysis (PIP) process. The fiber surface characteristics were evaluated by SEM, XPS and Raman analysis. The effects of fiber surface characteristics on the interfacial microstructure and mechanical properties of the KD SiC f/SiC composites were investigated. The results show that the tensile strength of the KD-2 SiC fibers (with silicon-based oxide surface layers) is about 85% that of the KD-1 SiC fibers (with pyrocarbon (PyC) surface layers), but the flexural strength of the KD-2 SiC f/SiC composite is only around 15% that of the KD-1 SiC f/SiC composite. SEM, TEM and elemental mapping analysis show that the large strength difference between the two composites is ascribed to the interfacial microstructure and the degree of fiber damage, which are arising from the different fiber surface characteristics.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2009.07.018