Flexural ductility of high-strength concrete columns with minimal confinement
The use of high-strength concrete (HSC) instead of normal-strength concrete (NSC) in columns has the advantage of allowing the column size to be reduced and is thus becoming popular. However, since HSC is more brittle than NSC, its use could result in undesirable brittle failure. To evaluate the duc...
Gespeichert in:
Veröffentlicht in: | Materials and structures 2009-08, Vol.42 (7), p.909-921 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The use of high-strength concrete (HSC) instead of normal-strength concrete (NSC) in columns has the advantage of allowing the column size to be reduced and is thus becoming popular. However, since HSC is more brittle than NSC, its use could result in undesirable brittle failure. To evaluate the ductility of columns, nonlinear moment–curvature analysis taking into account the stress-path dependence of the steel reinforcement is required. Based on such analysis, a parametric study has been conducted to investigate the effects of various factors on the ductility of columns. The results revealed that the effect of concrete strength is dependent on the axial stress level (axial load to area ratio) and axial load level (axial load to capacity ratio). At the same axial stress level, the use of HSC has little or basically no adverse effect on the ductility but if the same axial load level is maintained to reduce the column size, the use of HSC would significantly reduce the ductility. Finally, two formulas for direct evaluation of the ductility of columns are developed. |
---|---|
ISSN: | 1359-5997 1871-6873 |
DOI: | 10.1617/s11527-008-9431-5 |