Best approximation, coincidence and fixed point theorems for quasi-lower semicontinuous set-valued maps in hyperconvex metric spaces

Suppose X is a compact admissible subset of a hyperconvex metric spaces M , and suppose F : X ⊸ M is a quasi-lower semicontinuous set-valued map whose values are nonempty admissible. Suppose also G : X ⊸ X is a continuous, onto quasi-convex set-valued map with compact, admissible values. Then there...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2009-12, Vol.71 (11), p.5151-5156
Hauptverfasser: Amini-Harandi, A., Farajzadeh, A.P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose X is a compact admissible subset of a hyperconvex metric spaces M , and suppose F : X ⊸ M is a quasi-lower semicontinuous set-valued map whose values are nonempty admissible. Suppose also G : X ⊸ X is a continuous, onto quasi-convex set-valued map with compact, admissible values. Then there exists an x 0 ∈ X such that d ( G ( x 0 ) , F ( x 0 ) ) = inf x ∈ X d ( x , F ( x 0 ) ) . As applications, we give some coincidence and fixed point results for weakly inward set-valued maps. Our results, generalize some well-known results in literature.
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2009.03.082