Best approximation, coincidence and fixed point theorems for quasi-lower semicontinuous set-valued maps in hyperconvex metric spaces
Suppose X is a compact admissible subset of a hyperconvex metric spaces M , and suppose F : X ⊸ M is a quasi-lower semicontinuous set-valued map whose values are nonempty admissible. Suppose also G : X ⊸ X is a continuous, onto quasi-convex set-valued map with compact, admissible values. Then there...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2009-12, Vol.71 (11), p.5151-5156 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Suppose
X
is a compact admissible subset of a hyperconvex metric spaces
M
, and suppose
F
:
X
⊸
M
is a quasi-lower semicontinuous set-valued map whose values are nonempty admissible. Suppose also
G
:
X
⊸
X
is a continuous, onto quasi-convex set-valued map with compact, admissible values. Then there exists an
x
0
∈
X
such that
d
(
G
(
x
0
)
,
F
(
x
0
)
)
=
inf
x
∈
X
d
(
x
,
F
(
x
0
)
)
.
As applications, we give some coincidence and fixed point results for weakly inward set-valued maps. Our results, generalize some well-known results in literature. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2009.03.082 |