Evaporation induced diameter control in fiber crystal growth by micro-pulling-down technique: Bi4Ge3O12
Diameter self‐control was established in Bi4Ge3O12 fiber crystal growth by micro‐pulling‐down technique. In accordance with Bi2O3‐GeO2 phase diagram, the diameter was controlled due to compensation of solidification with evaporation of volatile Bi2O3 self‐flux charged into the crucible with excess....
Gespeichert in:
Veröffentlicht in: | Crystal research and technology (1979) 2006-10, Vol.41 (10), p.972-978 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Diameter self‐control was established in Bi4Ge3O12 fiber crystal growth by micro‐pulling‐down technique. In accordance with Bi2O3‐GeO2 phase diagram, the diameter was controlled due to compensation of solidification with evaporation of volatile Bi2O3 self‐flux charged into the crucible with excess. The crucibles had capillary channels of 310 or 650 μm in outer diameter. The crystals up to 400 mm long and 50‐300 μm in diameter were grown at pulling‐down rates of 0.04‐1.00 mm/min. The melt composition and the pulling rate were generally only two parameters determining solidification rate. As a result, crystals with uniform (± 10%) diameter and aspect ratio up to 104 were produced without automation of the process. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim) |
---|---|
ISSN: | 0232-1300 1521-4079 |
DOI: | 10.1002/crat.200610707 |