Convergence analysis of the preconditioned Gauss–Seidel method for H -matrices
In 1997, Kohno et al. [Toshiyuki Kohno, Hisashi Kotakemori, Hiroshi Niki, Improving the modified Gauss–Seidel method for Z -matrices, Linear Algebra Appl. 267 (1997) 113–123] proved that the convergence rate of the preconditioned Gauss–Seidel method for irreducibly diagonally dominant Z -matrices wi...
Gespeichert in:
Veröffentlicht in: | Computers & mathematics with applications (1987) 2008-10, Vol.56 (8), p.2048-2053 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 1997, Kohno et al. [Toshiyuki Kohno, Hisashi Kotakemori, Hiroshi Niki, Improving the modified Gauss–Seidel method for
Z
-matrices, Linear Algebra Appl. 267 (1997) 113–123] proved that the convergence rate of the preconditioned Gauss–Seidel method for irreducibly diagonally dominant
Z
-matrices with a preconditioner
I
+
S
α
is superior to that of the basic iterative method. In this paper, we present a new preconditioner
I
+
K
β
which is different from the preconditioner given by Kohno et al. [Toshiyuki Kohno, Hisashi Kotakemori, Hiroshi Niki, Improving the modified Gauss–Seidel method for
Z
-matrices, Linear Algebra Appl. 267 (1997) 113–123] and prove the convergence theory about two preconditioned iterative methods when the coefficient matrix is an
H
-matrix. Meanwhile, two novel sufficient conditions for guaranteeing the convergence of the preconditioned iterative methods are given. |
---|---|
ISSN: | 0898-1221 1873-7668 |
DOI: | 10.1016/j.camwa.2008.03.033 |