The Effect of Laser Pulse Duration and Feed Rate on Pulsed Laser Polishing of Microfabricated Nickel Samples
The objective of this work was to improve our understanding of pulsed laser micropolishing (PLμP) by studying the effects of laser pulse length and feed rate (pulses per millimeter) on surface roughness. PLμP experiments were conducted with a multimode neodymium-doped yttrium aluminum garnet (Nd:YAG...
Gespeichert in:
Veröffentlicht in: | Journal of manufacturing science and engineering 2009-06, Vol.131 (3), p.7-7 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The objective of this work was to improve our understanding of pulsed laser micropolishing (PLμP) by studying the effects of laser pulse length and feed rate (pulses per millimeter) on surface roughness. PLμP experiments were conducted with a multimode neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (1064 nm wavelength) that was focused down to approximately 50 μm diameter and scanned over the stationary workpiece surface. Simulation results presented here and previous work suggest that longer laser pulses result in smoother surfaces. Results on microfabricated nickel samples using laser pulse durations of 300 ns and 650 ns test this hypothesis. Polishing with 300 ns and 650 ns pulse durations results in an average surface roughness of 66 nm and 47 nm, respectively; reductions of 30% and 50% compared with the original surface. Furthermore, PLμP is shown to introduce a minor artifact on the sample surface whose spatial frequency (1/mm) is directly related to the laser feed rate (pulses/mm). |
---|---|
ISSN: | 1087-1357 1528-8935 |
DOI: | 10.1115/1.3106033 |