Synopsis diffusion for robust aggregation in sensor networks

Previous approaches for computing duplicate-sensitive aggregates in wireless sensor networks have used a tree topology, in order to conserve energy and to avoid double-counting sensor readings. However, a tree topology is not robust against node and communication failures, which are common in sensor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on sensor networks 2008-03, Vol.4 (2), p.1-40
Hauptverfasser: Nath, Suman, Gibbons, Phillip B., Seshan, Srinivasan, Anderson, Zachary
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Previous approaches for computing duplicate-sensitive aggregates in wireless sensor networks have used a tree topology, in order to conserve energy and to avoid double-counting sensor readings. However, a tree topology is not robust against node and communication failures, which are common in sensor networks. In this article, we present synopsis diffusion , a general framework for achieving significantly more accurate and reliable answers by combining energy-efficient multipath routing schemes with techniques that avoid double-counting. Synopsis diffusion avoids double-counting through the use of order- and duplicate-insensitive (ODI) synopses that compactly summarize intermediate results during in-network aggregation. We provide a surprisingly simple test that makes it easy to check the correctness of an ODI synopsis. We show that the properties of ODI synopses and synopsis diffusion create implicit acknowledgments of packet delivery. Such acknowledgments enable energy-efficient adaptation of message routes to dynamic message loss conditions, even in the presence of asymmetric links. Finally, we illustrate using extensive simulations the significant robustness, accuracy, and energy-efficiency improvements of synopsis diffusion over previous approaches.
ISSN:1550-4859
1550-4867
DOI:10.1145/1340771.1340773