Structure and chemical composition of LiB3O5 surfaces

The electronic and structural properties of LiB3O5 (LBO) surfaces have been studied by X‐ray photoemission spectroscopy (XPS) and reflectance high‐energy electron diffraction (RHEED). The as‐grown (110) crystal face and mechanically polished (001) surfaces have been investigated comparatively. Elect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystal research and technology (1979) 2003-10, Vol.38 (10), p.896-902
Hauptverfasser: Atuchin, V. V., Kesler, V. G., Lisova, I. A., Pokrovsky, L. D., Pylneva, N. A., Yurkin, A. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The electronic and structural properties of LiB3O5 (LBO) surfaces have been studied by X‐ray photoemission spectroscopy (XPS) and reflectance high‐energy electron diffraction (RHEED). The as‐grown (110) crystal face and mechanically polished (001) surfaces have been investigated comparatively. Electronic structure of LBO has been determined on as‐grown (110) crystal face previously cleaned by chemical etching with RHEED control. The correlation of valence band structure and measured binding energies with earlier reported results has been discussed. Core‐level spectroscopy reveals strong enriching of mechanically polished LBO surface with carbon, when nanodiamond powder is used as an abrasive. So high carbon level as C:B = 0.7 has been observed at the surface while the ratio Li:B:O remains according to LBO chemical composition. The association of LBO Kikuchi‐lines with strong background has been shown by RHEED analysis of the surface. Thus, the polished LBO surface constitutes a high structure quality LBO with the inclusions of some amorphous carbon compound. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:0232-1300
1521-4079
DOI:10.1002/crat.200310109