Skew-aware polarity assignment in clock tree

In modern sequential VLSI designs, clock tree plays an important role in synchronizing different components in a chip. To reduce peak current and power/ground noises caused by clock network, assigning different signal polarities to clock buffers is proposed in previous work. Although peak current an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on design automation of electronic systems 2009-03, Vol.14 (2), p.1-17
Hauptverfasser: Chen, Po-Yuan, Ho, Kuan-Hsien, Hwang, Tingting
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In modern sequential VLSI designs, clock tree plays an important role in synchronizing different components in a chip. To reduce peak current and power/ground noises caused by clock network, assigning different signal polarities to clock buffers is proposed in previous work. Although peak current and power/ground noises are minimized by signal polarities assignment, an assignment without timing information may increase the clock skew significantly. As a result, a timing-aware signal polarities assigning technique is necessary. In this article, we propose a novel signal polarities assigning technique which can not only reduce peak current and power/ground noises simultaneously but also render the clock skew in control. The experimental result shows that the clock skew produced by our algorithm is 94% of original clock skew in average while the clock skews produced by three algorithms (Partition, MST, Matching) in the absence of post clock tuning steps in the previous work are 235%, 272%, and 283%, respectively. Moreover, our algorithm is as efficient as the three algorithms of the previous work in reducing peak current and power/ground noises.
ISSN:1084-4309
1557-7309
DOI:10.1145/1497561.1497574