Artificial neural network for tsunami forecasting

This paper presents a data-driven approach for effective and efficient forecasting of tsunami generated by underwater earthquakes. Based on pre-computed tsunami scenarios as training data sets the Artificial Neural Network (ANN) is used for the construction of data-driven forecasting models. The tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Asian earth sciences 2009-09, Vol.36 (1), p.29-37
Hauptverfasser: Romano, Michele, Liong, Shie-Yui, Vu, Minh Tue, Zemskyy, Pavlo, Doan, Chi Dung, Dao, My Ha, Tkalich, Pavel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue 1
container_start_page 29
container_title Journal of Asian earth sciences
container_volume 36
creator Romano, Michele
Liong, Shie-Yui
Vu, Minh Tue
Zemskyy, Pavlo
Doan, Chi Dung
Dao, My Ha
Tkalich, Pavel
description This paper presents a data-driven approach for effective and efficient forecasting of tsunami generated by underwater earthquakes. Based on pre-computed tsunami scenarios as training data sets the Artificial Neural Network (ANN) is used for the construction of data-driven forecasting models. The training data comprised spatial values of maximum tsunami heights and tsunami arrival times (snapshots), computed with process-based TUNAMI-N2-NUS model for the most probable ocean floor rupture scenarios. Validation tests demonstrated that with a given earthquake size and location, the ANN method provides accurate and near instantaneous forecasting of the maximum tsunami heights and arrival times for the entire computational domain.
doi_str_mv 10.1016/j.jseaes.2008.11.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34680234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1367912008001909</els_id><sourcerecordid>20187310</sourcerecordid><originalsourceid>FETCH-LOGICAL-a391t-df889689397e61a1cf6d2b89ec9003f9e2d633448b2c82781f3701ba0e67b1953</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhC0EEqXwBhx64pawG6eOfUGqKv6kSlzgbDnOGjmkSbFTEG-PSzjDaecwM5r9GLtEyBFQXLd5G8lQzAsAmSPmAPyIzVBWMltWUhwnzUWVKSzglJ3F2AKAkCXMGK7C6J233nSLnvbh54yfQ3hbuCEsxrjvzdYfNFkTR9-_nrMTZ7pIF793zl7ubp_XD9nm6f5xvdpkhiscs8ZJqYRUXFUk0KB1oilqqciqtM4pKhrBeVnKurCyqCQ6XgHWBkhUNaoln7OrqXcXhvc9xVFvfbTUdaanYR81L4WEgpf_GgtIIDhCMpaT0YYhxkBO74LfmvClEfQBpG71BFIfQGpEnaam2M0Uo_Tth6ego_XUW2p8gjLqZvB_F3wDZoR8xw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20187310</pqid></control><display><type>article</type><title>Artificial neural network for tsunami forecasting</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Romano, Michele ; Liong, Shie-Yui ; Vu, Minh Tue ; Zemskyy, Pavlo ; Doan, Chi Dung ; Dao, My Ha ; Tkalich, Pavel</creator><creatorcontrib>Romano, Michele ; Liong, Shie-Yui ; Vu, Minh Tue ; Zemskyy, Pavlo ; Doan, Chi Dung ; Dao, My Ha ; Tkalich, Pavel</creatorcontrib><description>This paper presents a data-driven approach for effective and efficient forecasting of tsunami generated by underwater earthquakes. Based on pre-computed tsunami scenarios as training data sets the Artificial Neural Network (ANN) is used for the construction of data-driven forecasting models. The training data comprised spatial values of maximum tsunami heights and tsunami arrival times (snapshots), computed with process-based TUNAMI-N2-NUS model for the most probable ocean floor rupture scenarios. Validation tests demonstrated that with a given earthquake size and location, the ANN method provides accurate and near instantaneous forecasting of the maximum tsunami heights and arrival times for the entire computational domain.</description><identifier>ISSN: 1367-9120</identifier><identifier>EISSN: 1878-5786</identifier><identifier>DOI: 10.1016/j.jseaes.2008.11.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Artificial neural network ; Data-driven model ; Marine ; Tsunami forecast</subject><ispartof>Journal of Asian earth sciences, 2009-09, Vol.36 (1), p.29-37</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a391t-df889689397e61a1cf6d2b89ec9003f9e2d633448b2c82781f3701ba0e67b1953</citedby><cites>FETCH-LOGICAL-a391t-df889689397e61a1cf6d2b89ec9003f9e2d633448b2c82781f3701ba0e67b1953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jseaes.2008.11.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Romano, Michele</creatorcontrib><creatorcontrib>Liong, Shie-Yui</creatorcontrib><creatorcontrib>Vu, Minh Tue</creatorcontrib><creatorcontrib>Zemskyy, Pavlo</creatorcontrib><creatorcontrib>Doan, Chi Dung</creatorcontrib><creatorcontrib>Dao, My Ha</creatorcontrib><creatorcontrib>Tkalich, Pavel</creatorcontrib><title>Artificial neural network for tsunami forecasting</title><title>Journal of Asian earth sciences</title><description>This paper presents a data-driven approach for effective and efficient forecasting of tsunami generated by underwater earthquakes. Based on pre-computed tsunami scenarios as training data sets the Artificial Neural Network (ANN) is used for the construction of data-driven forecasting models. The training data comprised spatial values of maximum tsunami heights and tsunami arrival times (snapshots), computed with process-based TUNAMI-N2-NUS model for the most probable ocean floor rupture scenarios. Validation tests demonstrated that with a given earthquake size and location, the ANN method provides accurate and near instantaneous forecasting of the maximum tsunami heights and arrival times for the entire computational domain.</description><subject>Artificial neural network</subject><subject>Data-driven model</subject><subject>Marine</subject><subject>Tsunami forecast</subject><issn>1367-9120</issn><issn>1878-5786</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhC0EEqXwBhx64pawG6eOfUGqKv6kSlzgbDnOGjmkSbFTEG-PSzjDaecwM5r9GLtEyBFQXLd5G8lQzAsAmSPmAPyIzVBWMltWUhwnzUWVKSzglJ3F2AKAkCXMGK7C6J233nSLnvbh54yfQ3hbuCEsxrjvzdYfNFkTR9-_nrMTZ7pIF793zl7ubp_XD9nm6f5xvdpkhiscs8ZJqYRUXFUk0KB1oilqqciqtM4pKhrBeVnKurCyqCQ6XgHWBkhUNaoln7OrqXcXhvc9xVFvfbTUdaanYR81L4WEgpf_GgtIIDhCMpaT0YYhxkBO74LfmvClEfQBpG71BFIfQGpEnaam2M0Uo_Tth6ego_XUW2p8gjLqZvB_F3wDZoR8xw</recordid><startdate>20090904</startdate><enddate>20090904</enddate><creator>Romano, Michele</creator><creator>Liong, Shie-Yui</creator><creator>Vu, Minh Tue</creator><creator>Zemskyy, Pavlo</creator><creator>Doan, Chi Dung</creator><creator>Dao, My Ha</creator><creator>Tkalich, Pavel</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>7QQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope></search><sort><creationdate>20090904</creationdate><title>Artificial neural network for tsunami forecasting</title><author>Romano, Michele ; Liong, Shie-Yui ; Vu, Minh Tue ; Zemskyy, Pavlo ; Doan, Chi Dung ; Dao, My Ha ; Tkalich, Pavel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a391t-df889689397e61a1cf6d2b89ec9003f9e2d633448b2c82781f3701ba0e67b1953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial neural network</topic><topic>Data-driven model</topic><topic>Marine</topic><topic>Tsunami forecast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romano, Michele</creatorcontrib><creatorcontrib>Liong, Shie-Yui</creatorcontrib><creatorcontrib>Vu, Minh Tue</creatorcontrib><creatorcontrib>Zemskyy, Pavlo</creatorcontrib><creatorcontrib>Doan, Chi Dung</creatorcontrib><creatorcontrib>Dao, My Ha</creatorcontrib><creatorcontrib>Tkalich, Pavel</creatorcontrib><collection>CrossRef</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Ceramic Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of Asian earth sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romano, Michele</au><au>Liong, Shie-Yui</au><au>Vu, Minh Tue</au><au>Zemskyy, Pavlo</au><au>Doan, Chi Dung</au><au>Dao, My Ha</au><au>Tkalich, Pavel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural network for tsunami forecasting</atitle><jtitle>Journal of Asian earth sciences</jtitle><date>2009-09-04</date><risdate>2009</risdate><volume>36</volume><issue>1</issue><spage>29</spage><epage>37</epage><pages>29-37</pages><issn>1367-9120</issn><eissn>1878-5786</eissn><abstract>This paper presents a data-driven approach for effective and efficient forecasting of tsunami generated by underwater earthquakes. Based on pre-computed tsunami scenarios as training data sets the Artificial Neural Network (ANN) is used for the construction of data-driven forecasting models. The training data comprised spatial values of maximum tsunami heights and tsunami arrival times (snapshots), computed with process-based TUNAMI-N2-NUS model for the most probable ocean floor rupture scenarios. Validation tests demonstrated that with a given earthquake size and location, the ANN method provides accurate and near instantaneous forecasting of the maximum tsunami heights and arrival times for the entire computational domain.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jseaes.2008.11.003</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1367-9120
ispartof Journal of Asian earth sciences, 2009-09, Vol.36 (1), p.29-37
issn 1367-9120
1878-5786
language eng
recordid cdi_proquest_miscellaneous_34680234
source Elsevier ScienceDirect Journals Complete
subjects Artificial neural network
Data-driven model
Marine
Tsunami forecast
title Artificial neural network for tsunami forecasting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T18%3A34%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20network%20for%20tsunami%20forecasting&rft.jtitle=Journal%20of%20Asian%20earth%20sciences&rft.au=Romano,%20Michele&rft.date=2009-09-04&rft.volume=36&rft.issue=1&rft.spage=29&rft.epage=37&rft.pages=29-37&rft.issn=1367-9120&rft.eissn=1878-5786&rft_id=info:doi/10.1016/j.jseaes.2008.11.003&rft_dat=%3Cproquest_cross%3E20187310%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20187310&rft_id=info:pmid/&rft_els_id=S1367912008001909&rfr_iscdi=true