Artificial neural network for tsunami forecasting

This paper presents a data-driven approach for effective and efficient forecasting of tsunami generated by underwater earthquakes. Based on pre-computed tsunami scenarios as training data sets the Artificial Neural Network (ANN) is used for the construction of data-driven forecasting models. The tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Asian earth sciences 2009-09, Vol.36 (1), p.29-37
Hauptverfasser: Romano, Michele, Liong, Shie-Yui, Vu, Minh Tue, Zemskyy, Pavlo, Doan, Chi Dung, Dao, My Ha, Tkalich, Pavel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a data-driven approach for effective and efficient forecasting of tsunami generated by underwater earthquakes. Based on pre-computed tsunami scenarios as training data sets the Artificial Neural Network (ANN) is used for the construction of data-driven forecasting models. The training data comprised spatial values of maximum tsunami heights and tsunami arrival times (snapshots), computed with process-based TUNAMI-N2-NUS model for the most probable ocean floor rupture scenarios. Validation tests demonstrated that with a given earthquake size and location, the ANN method provides accurate and near instantaneous forecasting of the maximum tsunami heights and arrival times for the entire computational domain.
ISSN:1367-9120
1878-5786
DOI:10.1016/j.jseaes.2008.11.003