Artificial neural network for tsunami forecasting
This paper presents a data-driven approach for effective and efficient forecasting of tsunami generated by underwater earthquakes. Based on pre-computed tsunami scenarios as training data sets the Artificial Neural Network (ANN) is used for the construction of data-driven forecasting models. The tra...
Gespeichert in:
Veröffentlicht in: | Journal of Asian earth sciences 2009-09, Vol.36 (1), p.29-37 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a data-driven approach for effective and efficient forecasting of tsunami generated by underwater earthquakes. Based on pre-computed tsunami scenarios as training data sets the Artificial Neural Network (ANN) is used for the construction of data-driven forecasting models. The training data comprised spatial values of maximum tsunami heights and tsunami arrival times (snapshots), computed with process-based TUNAMI-N2-NUS model for the most probable ocean floor rupture scenarios. Validation tests demonstrated that with a given earthquake size and location, the ANN method provides accurate and near instantaneous forecasting of the maximum tsunami heights and arrival times for the entire computational domain. |
---|---|
ISSN: | 1367-9120 1878-5786 |
DOI: | 10.1016/j.jseaes.2008.11.003 |