SBA: A software package for generic sparse bundle adjustment

Bundle adjustment constitutes a large, nonlinear least-squares problem that is often solved as the last step of feature-based structure and motion estimation computer vision algorithms to obtain optimal estimates. Due to the very large number of parameters involved, a general purpose least-squares a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on mathematical software 2009-03, Vol.36 (1), p.1-30
Hauptverfasser: Lourakis, Manolis I. A., Argyros, Antonis A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bundle adjustment constitutes a large, nonlinear least-squares problem that is often solved as the last step of feature-based structure and motion estimation computer vision algorithms to obtain optimal estimates. Due to the very large number of parameters involved, a general purpose least-squares algorithm incurs high computational and memory storage costs when applied to bundle adjustment. Fortunately, the lack of interaction among certain subgroups of parameters results in the corresponding Jacobian being sparse, a fact that can be exploited to achieve considerable computational savings. This article presents sba, a publicly available C/C++ software package for realizing generic bundle adjustment with high efficiency and flexibility regarding parameterization.
ISSN:0098-3500
1557-7295
DOI:10.1145/1486525.1486527