Reconstructing Extended Perfect Binary One-Error-Correcting Codes From Their Minimum Distance Graphs

The minimum distance graph of a code has the codewords as vertices and edges exactly when the Hamming distance between two codewords equals the minimum distance of the code. A constructive proof for reconstructibility of an extended perfect binary one-error-correcting code from its minimum distance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2009-06, Vol.55 (6), p.2622-2625
Hauptverfasser: Mogilnykh, I.Yu, Ostergard, P.R.J., Pottonen, O., Solov'eva, F.I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The minimum distance graph of a code has the codewords as vertices and edges exactly when the Hamming distance between two codewords equals the minimum distance of the code. A constructive proof for reconstructibility of an extended perfect binary one-error-correcting code from its minimum distance graph is presented. Consequently, inequivalent such codes have nonisomorphic minimum distance graphs. Moreover, it is shown that the automorphism group of a minimum distance graph is isomorphic to that of the corresponding code.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2009.2018338