Hamiltonian circuit and linear array embeddings in faulty k-ary n-cubes
In this paper, we investigate the fault-tolerant capabilities of the k-ary n-cubes for even integer k with respect to the hamiltonian and hamiltonian-connected properties. The k-ary n-cube is a bipartite graph if and only if k is an even integer. Let F be a faulty set with nodes and/or links, and le...
Gespeichert in:
Veröffentlicht in: | Journal of parallel and distributed computing 2007-04, Vol.67 (4), p.362-368 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we investigate the fault-tolerant capabilities of the
k-ary
n-cubes for even integer
k with respect to the hamiltonian and hamiltonian-connected properties. The
k-ary
n-cube is a bipartite graph if and only if
k is an even integer. Let
F be a faulty set with nodes and/or links, and let
k
⩾
3
be an odd integer. When
|
F
|
⩽
2
n
-
2
, we show that there exists a hamiltonian cycle in a wounded
k-ary
n-cube. In addition, when
|
F
|
⩽
2
n
-
3
, we prove that, for two arbitrary nodes, there exists a hamiltonian path connecting these two nodes in a wounded
k-ary
n-cube. Since the
k-ary
n-cube is regular of degree
2
n
, the degrees of fault-tolerance
2
n
-
3
and
2
n
-
2
respectively, are optimal in the worst case. |
---|---|
ISSN: | 0743-7315 1096-0848 |
DOI: | 10.1016/j.jpdc.2005.10.004 |