HWCVD of polymers: Commercialization and scale-up
GVD Corporation specializes in process development and equipment design for the production of ultra-thin polymer coatings using hot wire chemical vapor deposition (HWCVD, also known as initiated chemical vapor deposition, iCVD). HWCVD allows many coating compositions to be produced, including fluoro...
Gespeichert in:
Veröffentlicht in: | Thin solid films 2009-04, Vol.517 (12), p.3551-3554 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | GVD Corporation specializes in process development and equipment design for the production of ultra-thin polymer coatings using hot wire chemical vapor deposition (HWCVD, also known as initiated chemical vapor deposition, iCVD). HWCVD allows many coating compositions to be produced, including fluorocarbon and silicone polymers, copolymers, and vinyl hydrocarbon polymers. It is especially valuable for creating ultra-thin layers of insoluble, infusible polymers which are hard to process by conventional means, such as polytetrafluoroethylene (PTFE, Teflon
®). HWCVD PTFE coatings are chemically robust, comprised of essentially 100% CF
2, resistant to solvents, conformal to complex surface geometry, and have excellent adhesion to a wide range of substrates. Since the part to be coated remains at room temperature, fragile materials like plastics and fabrics can be coated with ease. GVD has focused on scale-up of the process equipment and has developed several standard coating systems, which will be discussed in this paper. These include laboratory-scale batch coating systems, a medium sized production batch coating system, a large scale custom batch coater, and a pilot scale roll-to-roll web coater. All of GVD's systems are complete with fully automated, computer based control systems and include options for effluent monitors and an exhaust scrubber. |
---|---|
ISSN: | 0040-6090 1879-2731 |
DOI: | 10.1016/j.tsf.2009.01.114 |