A Generalized Cross-Entropy Approach for Modeling Spatially Correlated Counts

This article discusses and applies an information-theoretic framework for incorporating knowledge of the spatial structure in a sample while extracting from it information about processes resulting in count outcomes. The framework, an application of the Generalized Cross-Entropy (GCE) method of esti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric reviews 2008-07, Vol.27 (4-6), p.574-595
1. Verfasser: Bhati, Avinash Singh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 595
container_issue 4-6
container_start_page 574
container_title Econometric reviews
container_volume 27
creator Bhati, Avinash Singh
description This article discusses and applies an information-theoretic framework for incorporating knowledge of the spatial structure in a sample while extracting from it information about processes resulting in count outcomes. The framework, an application of the Generalized Cross-Entropy (GCE) method of estimating count outcome models, allows researchers to incorporate such real-world features as unobserved heterogeneity-with or without spatial clustering-when modeling spatially correlated counts. The information-recovering potential of the approach is investigated using a limited set of simulations. It is then used to study the determinants of counts of homicides recorded in 343 neighborhoods in Chicago, Illinois.
doi_str_mv 10.1080/07474930801960451
format Article
fullrecord <record><control><sourceid>proquest_repec</sourceid><recordid>TN_cdi_proquest_miscellaneous_34587738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1486427961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c568t-d21b8dda8e99e2158e4f0b83fb085060ccd85aedfd95a2f62d1f7ef79c5a41cc3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhiMEEkvhB3CLOCAuAX_bkbisVm1B2ooDcLa89pimcuJge9uGX4-jRRyogMN8SH7eVzOepnmJ0VuMFHqHJJOsp7XFvUCM40fNBnNKOoaFetxs1veuAupp8yznG4SQEoRumqttewkTJBOGH-DaXYo5d-dTSXFe2u08p2jsdetjaq-igzBM39rPsymDCWFpdzElCKaswnicSn7ePPEmZHjxq541Xy_Ov-w-dPtPlx93231nuVClcwQflHNGQd8DwVwB8-igqD8gxZFA1jrFDTjvem6IF8RhL8HL3nLDsLX0rHl98q3zfT9CLnocsoUQzATxmDVlXElJVQXf_BPESgjBOe5RRV_9gd7EY5rqGppgghSlRFYInyC7flQCr-c0jCYtGiO9HkI_OETV7E-aBDPY34JiPIxQ0q2-1dQQWdOyNvUytQw1mBY1zzW4ZJr3XF-XsdrJk90w1bOM5i6m4KrbEmLyyUx2yA-H0OW-VOX7_yrp3_f4CcjLuek</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>212083327</pqid></control><display><type>article</type><title>A Generalized Cross-Entropy Approach for Modeling Spatially Correlated Counts</title><source>RePEc</source><source>Business Source Complete</source><creator>Bhati, Avinash Singh</creator><creatorcontrib>Bhati, Avinash Singh</creatorcontrib><description>This article discusses and applies an information-theoretic framework for incorporating knowledge of the spatial structure in a sample while extracting from it information about processes resulting in count outcomes. The framework, an application of the Generalized Cross-Entropy (GCE) method of estimating count outcome models, allows researchers to incorporate such real-world features as unobserved heterogeneity-with or without spatial clustering-when modeling spatially correlated counts. The information-recovering potential of the approach is investigated using a limited set of simulations. It is then used to study the determinants of counts of homicides recorded in 343 neighborhoods in Chicago, Illinois.</description><identifier>ISSN: 0747-4938</identifier><identifier>EISSN: 1532-4168</identifier><identifier>DOI: 10.1080/07474930801960451</identifier><language>eng</language><publisher>New York: Taylor &amp; Francis Group</publisher><subject>Chicago Illinois ; Count outcomes ; Economic models ; Generalized Cross-Entropy estimation ; Homicide rate ; Information ; Maximum entropy method ; Simulation ; Spatial processes ; Studies ; United States ; Unobserved heterogeneity</subject><ispartof>Econometric reviews, 2008-07, Vol.27 (4-6), p.574-595</ispartof><rights>Copyright Taylor &amp; Francis Group, LLC 2008</rights><rights>Copyright Marcel Dekker, Inc. Jul 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c568t-d21b8dda8e99e2158e4f0b83fb085060ccd85aedfd95a2f62d1f7ef79c5a41cc3</citedby><cites>FETCH-LOGICAL-c568t-d21b8dda8e99e2158e4f0b83fb085060ccd85aedfd95a2f62d1f7ef79c5a41cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4008,27924,27925</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/tafemetrv/v_3a27_3ay_3a2008_3ai_3a4-6_3ap_3a574-595.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhati, Avinash Singh</creatorcontrib><title>A Generalized Cross-Entropy Approach for Modeling Spatially Correlated Counts</title><title>Econometric reviews</title><description>This article discusses and applies an information-theoretic framework for incorporating knowledge of the spatial structure in a sample while extracting from it information about processes resulting in count outcomes. The framework, an application of the Generalized Cross-Entropy (GCE) method of estimating count outcome models, allows researchers to incorporate such real-world features as unobserved heterogeneity-with or without spatial clustering-when modeling spatially correlated counts. The information-recovering potential of the approach is investigated using a limited set of simulations. It is then used to study the determinants of counts of homicides recorded in 343 neighborhoods in Chicago, Illinois.</description><subject>Chicago Illinois</subject><subject>Count outcomes</subject><subject>Economic models</subject><subject>Generalized Cross-Entropy estimation</subject><subject>Homicide rate</subject><subject>Information</subject><subject>Maximum entropy method</subject><subject>Simulation</subject><subject>Spatial processes</subject><subject>Studies</subject><subject>United States</subject><subject>Unobserved heterogeneity</subject><issn>0747-4938</issn><issn>1532-4168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><recordid>eNqFkU1v1DAQhiMEEkvhB3CLOCAuAX_bkbisVm1B2ooDcLa89pimcuJge9uGX4-jRRyogMN8SH7eVzOepnmJ0VuMFHqHJJOsp7XFvUCM40fNBnNKOoaFetxs1veuAupp8yznG4SQEoRumqttewkTJBOGH-DaXYo5d-dTSXFe2u08p2jsdetjaq-igzBM39rPsymDCWFpdzElCKaswnicSn7ePPEmZHjxq541Xy_Ov-w-dPtPlx93231nuVClcwQflHNGQd8DwVwB8-igqD8gxZFA1jrFDTjvem6IF8RhL8HL3nLDsLX0rHl98q3zfT9CLnocsoUQzATxmDVlXElJVQXf_BPESgjBOe5RRV_9gd7EY5rqGppgghSlRFYInyC7flQCr-c0jCYtGiO9HkI_OETV7E-aBDPY34JiPIxQ0q2-1dQQWdOyNvUytQw1mBY1zzW4ZJr3XF-XsdrJk90w1bOM5i6m4KrbEmLyyUx2yA-H0OW-VOX7_yrp3_f4CcjLuek</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Bhati, Avinash Singh</creator><general>Taylor &amp; Francis Group</general><general>Taylor and Francis Journals</general><general>Taylor &amp; Francis Ltd</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8BJ</scope><scope>8FD</scope><scope>FQK</scope><scope>JBE</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20080701</creationdate><title>A Generalized Cross-Entropy Approach for Modeling Spatially Correlated Counts</title><author>Bhati, Avinash Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c568t-d21b8dda8e99e2158e4f0b83fb085060ccd85aedfd95a2f62d1f7ef79c5a41cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chicago Illinois</topic><topic>Count outcomes</topic><topic>Economic models</topic><topic>Generalized Cross-Entropy estimation</topic><topic>Homicide rate</topic><topic>Information</topic><topic>Maximum entropy method</topic><topic>Simulation</topic><topic>Spatial processes</topic><topic>Studies</topic><topic>United States</topic><topic>Unobserved heterogeneity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhati, Avinash Singh</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>Technology Research Database</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Econometric reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhati, Avinash Singh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Generalized Cross-Entropy Approach for Modeling Spatially Correlated Counts</atitle><jtitle>Econometric reviews</jtitle><date>2008-07-01</date><risdate>2008</risdate><volume>27</volume><issue>4-6</issue><spage>574</spage><epage>595</epage><pages>574-595</pages><issn>0747-4938</issn><eissn>1532-4168</eissn><abstract>This article discusses and applies an information-theoretic framework for incorporating knowledge of the spatial structure in a sample while extracting from it information about processes resulting in count outcomes. The framework, an application of the Generalized Cross-Entropy (GCE) method of estimating count outcome models, allows researchers to incorporate such real-world features as unobserved heterogeneity-with or without spatial clustering-when modeling spatially correlated counts. The information-recovering potential of the approach is investigated using a limited set of simulations. It is then used to study the determinants of counts of homicides recorded in 343 neighborhoods in Chicago, Illinois.</abstract><cop>New York</cop><pub>Taylor &amp; Francis Group</pub><doi>10.1080/07474930801960451</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0747-4938
ispartof Econometric reviews, 2008-07, Vol.27 (4-6), p.574-595
issn 0747-4938
1532-4168
language eng
recordid cdi_proquest_miscellaneous_34587738
source RePEc; Business Source Complete
subjects Chicago Illinois
Count outcomes
Economic models
Generalized Cross-Entropy estimation
Homicide rate
Information
Maximum entropy method
Simulation
Spatial processes
Studies
United States
Unobserved heterogeneity
title A Generalized Cross-Entropy Approach for Modeling Spatially Correlated Counts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A07%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_repec&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Generalized%20Cross-Entropy%20Approach%20for%20Modeling%20Spatially%20Correlated%20Counts&rft.jtitle=Econometric%20reviews&rft.au=Bhati,%20Avinash%20Singh&rft.date=2008-07-01&rft.volume=27&rft.issue=4-6&rft.spage=574&rft.epage=595&rft.pages=574-595&rft.issn=0747-4938&rft.eissn=1532-4168&rft_id=info:doi/10.1080/07474930801960451&rft_dat=%3Cproquest_repec%3E1486427961%3C/proquest_repec%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=212083327&rft_id=info:pmid/&rfr_iscdi=true