A Generalized Cross-Entropy Approach for Modeling Spatially Correlated Counts

This article discusses and applies an information-theoretic framework for incorporating knowledge of the spatial structure in a sample while extracting from it information about processes resulting in count outcomes. The framework, an application of the Generalized Cross-Entropy (GCE) method of esti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric reviews 2008-07, Vol.27 (4-6), p.574-595
1. Verfasser: Bhati, Avinash Singh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article discusses and applies an information-theoretic framework for incorporating knowledge of the spatial structure in a sample while extracting from it information about processes resulting in count outcomes. The framework, an application of the Generalized Cross-Entropy (GCE) method of estimating count outcome models, allows researchers to incorporate such real-world features as unobserved heterogeneity-with or without spatial clustering-when modeling spatially correlated counts. The information-recovering potential of the approach is investigated using a limited set of simulations. It is then used to study the determinants of counts of homicides recorded in 343 neighborhoods in Chicago, Illinois.
ISSN:0747-4938
1532-4168
DOI:10.1080/07474930801960451