Decision Support in Concurrent Engineering – The Utility-Based Selection Decision Support Problem
Decisions are an important part of Concurrent Engineering and engineering design in general. Accordingly, more attention should be paid to the means and methods for making these decisions. In this article, a utility-based decision support method for the selection of an engineering design is presente...
Gespeichert in:
Veröffentlicht in: | Concurrent engineering, research and applications research and applications, 2005-03, Vol.13 (1), p.13-27 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Decisions are an important part of Concurrent Engineering and engineering design in general. Accordingly, more attention should be paid to the means and methods for making these decisions. In this article, a utility-based decision support method for the selection of an engineering design is presented. The utility-based selection decision support problem (u-sDSP) is a synthesized construct that facilitates selection decisions involving trade-offs among multiple, conflicting attributes and mitigation of risk associated with uncertain performance with respect to the attributes considered. The negative impact of unnecessary iterations on the product development cycle is reduced via the assurance of preference-consistent outcomes. Specifically, utility theory provides a mathematically rigorous means of clarifying and capturing designer preferences as well as identifying a preferred alternative in the context of stochastic uncertainty, while the selection decision support problem (DSP) – the construct within which utility theory is employed – facilitates the effective use of engineering judgment for (1) formulating and bounding decisions and (2) establishing a proper context. Application of the u-sDSP is illustrated with an example from rapid prototyping (RP), in which the goal is to select the appropriate technology and material combinations for testing the snap-fit design of a light switch cover plate assembly. |
---|---|
ISSN: | 1063-293X 1531-2003 |
DOI: | 10.1177/1063293X05050912 |