A Counterexample to a Conjecture of Niho

A conjecture of Niho states that under certain assumptions the Fourier transform of the function Tr (x d ) on F 2 n ,where d = (2 tk 1) /(2 k +1), has a spectrum with at most five values. We present a counterexample to this conjecture, and the theory behind finding it. We use the theory of quadratic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2007-12, Vol.53 (12), p.4785-4786
Hauptverfasser: Langevin, P., Leander, G., McGuire, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A conjecture of Niho states that under certain assumptions the Fourier transform of the function Tr (x d ) on F 2 n ,where d = (2 tk 1) /(2 k +1), has a spectrum with at most five values. We present a counterexample to this conjecture, and the theory behind finding it. We use the theory of quadratic forms over F 2 .
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2007.909109