A Counterexample to a Conjecture of Niho
A conjecture of Niho states that under certain assumptions the Fourier transform of the function Tr (x d ) on F 2 n ,where d = (2 tk 1) /(2 k +1), has a spectrum with at most five values. We present a counterexample to this conjecture, and the theory behind finding it. We use the theory of quadratic...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2007-12, Vol.53 (12), p.4785-4786 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A conjecture of Niho states that under certain assumptions the Fourier transform of the function Tr (x d ) on F 2 n ,where d = (2 tk 1) /(2 k +1), has a spectrum with at most five values. We present a counterexample to this conjecture, and the theory behind finding it. We use the theory of quadratic forms over F 2 . |
---|---|
ISSN: | 0018-9448 1557-9654 |
DOI: | 10.1109/TIT.2007.909109 |