Verification of 3-D parallel CDM software for the analysis of creep failure in the HAZ region of Cr–Mo–V crosswelds

The finite element-based Continuum Damage Mechanics (CDM) software DAMAGE XXX has been developed: to model high-temperature creep damage initiation, evolution and crack growth in 3-D engineering components; and, to run on parallel computer architectures. The driver has been to achieve computational...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of pressure vessels and piping 2009-08, Vol.86 (8), p.475-485
Hauptverfasser: Hayhurst, R.J., Vakili-Tahami, F., Hayhurst, D.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The finite element-based Continuum Damage Mechanics (CDM) software DAMAGE XXX has been developed: to model high-temperature creep damage initiation, evolution and crack growth in 3-D engineering components; and, to run on parallel computer architectures. The driver has been to achieve computational speed through computer parallelism. The development and verification of the software have been carried out using uni-axial crosswelded testpieces in which the plane of symmetry of the V-weld preparation is orthogonal to the tensile loading axis. The welds were manufactured using 0.5Cr–0.5Mo–0.25V ferritic parent steel, and a matching 2.25Cr–1Mo ferritic steel weld filler metal. The Heat Affected Zones (HAZ) of welds were assumed to be divided into three sub-regions: Coarse grained-HAZ (CG-HAZ); Refined grained-HAZ (R-HAZ); and, the inter-critical HAZ regions (Type IV-HAZ). Constitutive equations and associated parameters are summarised for weld, CG-HAZ, R-HAZ, Type IV-HAZ, and parent materials, at 575, 590, and 600 °C. These are used to make finite element-based predictions of crossweld testpiece lifetimes and failure modes using the newly developed 3-D parallel computer software, and independent 2-D serial software, at an average minimum cross-section stress of 69.5 MPa. Crossweld testpiece analyses, done using the newly developed 3-D parallel software, have been verified using independent results of 2-D serial software; and, of laboratory experiments.
ISSN:0308-0161
1879-3541
DOI:10.1016/j.ijpvp.2009.04.015