Abrasive waterjet cutting of polycrystalline diamond: A preliminary investigation
Although abrasive waterjet (AWJ) machining has been employed in different setups (e.g. through cutting, milling, turning, cleaning) to generate surfaces in various workpiece materials (e.g. metallic alloys, ceramics, composites), up to now there is scarce information on the use of this technology in...
Gespeichert in:
Veröffentlicht in: | International journal of machine tools & manufacture 2009-08, Vol.49 (10), p.797-803 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although abrasive waterjet (AWJ) machining has been employed in different setups (e.g. through cutting, milling, turning, cleaning) to generate surfaces in various workpiece materials (e.g. metallic alloys, ceramics, composites), up to now there is scarce information on the use of this technology in cutting super-hard materials such as diamond-based materials. The paper reports for the first time on a preliminary study of the capability of AWJ cutting of polycrystalline diamond (PCD) using abrasive media with different hardness, i.e. aluminium oxide (Al
2O
3), silicon carbide (SiC) and diamond. While keeping some operating parameters constant (pump pressure, stand-off distance and size of abrasives) the feed speed has been adjusted to enable full jet penetration for each type of abrasives. It was found that not only the material removal rates vary significantly with the employment of different types of abrasives but also the nozzle wear ratios, with further implications on the kerf quality (width, taper angle) of diamond cut surfaces. Furthermore in-depth studies of the cut surfaces helped to reveal the material removal mechanism when different types of abrasives are employed: Al
2O
3—low intensity erosion; SiC—medium erosion with undesired cracking; diamond—high intensity erosion. The experimental results showed that while Al
2O
3 and SiC abrasive media yield modest material removal rates (comparable with those obtained by electro discharge machining-EDM) the use of diamond abrasives can greatly increase (>200 times) the productivity of AWJ through cutting of PCD test pieces at acceptable roughness (Ra |
---|---|
ISSN: | 0890-6955 1879-2170 |
DOI: | 10.1016/j.ijmachtools.2009.04.003 |